HIDROGEOLOGÍA

FASE DE DIAGNÓSTICO
POMCA-RLOD (CÓDIGO 2118)

Corporación de Cuencas del Tolima
CORCUENCAS
NIT. 800.246.198 – 8
Calle 10 N° 3 – 76 Of. 303
Edif. Cámara de Comercio de Ibagué
Tel. (8) 2635780 – 2612412
REGISTRO DE APROBACIÓN:

<table>
<thead>
<tr>
<th>Elaboró:</th>
<th>Avaló:</th>
<th>Aprobó:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporación de Cuencas</td>
<td>Corporación Autónoma Regional</td>
<td>Consorcio POMCAS 2014</td>
</tr>
<tr>
<td>del Tolima – CORCUENCAS</td>
<td>del Tolima – CORTOLIMA</td>
<td></td>
</tr>
</tbody>
</table>

Este reporte ha sido preparado por el Consorcio Vino Tinto y Oro, y cedido a la Corporación de Cuencas del Tolima – CORCUENCAS, con un conocimiento razonable, con el cuidado y la diligencia establecidos en los términos del contrato con la Corporación Autónoma Regional del Tolima – CORTOLIMA, siguiendo los lineamientos establecidos por el Ministerio de Ambiente y Desarrollo Sostenible – MADS en la Guía POMCAS 2014 y bajo la interventoría del Consorcio POMCAS 2014.
CONTENIDO

1. HIDROGEOLOGÍA .. 7

1.1 UNIDADES HIDROESTRATÍGRAFICAS ... 8

1.1.1 Gneises y anfibolitas de tierradentro (PCAn) ... 8

1.1.2 Stock granítico (Pg) .. 8

1.1.3 Formación Luisa (Trl) ... 9

1.1.4 Formación Prepayandé (JTrpp) .. 9

1.1.5 Formación Payandé (Calizas) (JTrpo) .. 9

1.1.6 Formación Payandé (Mármoles) (JTrpm) .. 9

1.1.7 Formación Pospayandé (Jpp) .. 9

1.1.8 Batolito de Ibagué (Jgdi) .. 10

1.1.9 Stock de Payande (Jp) ... 10

1.1.10 Formación Caballo (Kic) .. 10

1.1.11 Calizas de Tetuán (Kit) .. 10

1.1.12 Shale de Bambuca (Ksb) ... 10

1.1.13 Formación Hondita y Loma Gorda (Ksh-Ig) .. 10

1.1.14 Grupo Olini (Kso) .. 11

1.1.15 Niveles de lutitas y areniscas (Ksla) ... 11

1.1.16 Formación La Tabla (KsIt) ... 11

1.1.17 Formación Seca (KPgs) .. 11

1.1.18 Formación Gualanday inferior (Pggi) ... 11

1.1.19 Formación Gualanday superior (Pggs) ... 12

1.1.20 Grupo Honda (Ngh) .. 12

1.1.21 Abanicos antiguos (Qa) ... 12

1.1.22 Abanico del Guamo (Qag) ... 12

1.1.23 Abanico del Espinal (Qae) ... 12

1.1.24 Depósitos piroclásticos (Qto) .. 13

1.1.25 Terrazas aluviales intramontanas (Qt) ... 13

1.1.26 Terrazas aluviales altas (Qta) .. 13

1.1.27 Terrazas aluviales bajas (Qtb) .. 13

1.1.28 Terrazas coluviales subrecientes (Qc) ... 13

1.1.29 Aluviones recientes (Qal) ... 14

1.2 CLASIFICACIÓN HIDROGEOLOGÍCA .. 14

1.2.1 Tipo I .. 14

1.2.2 Tipo II ... 14

1.2.3 Tipo III ... 15

1.3 DIRECCIÓN DE FLUJO REGIONAL .. 18

1.4 ZONAS DE RECARGA Y DESCARGA ... 18

1.4.1 Estimación de la recarga potencial .. 19

1.4.2 Zonas de descarga ... 27

1.5 VULNERABILIDAD INTRÍNSECA DE ACUÍFEROS .. 27

1.5.1 Metodología GOD .. 28

1.6 INVENTARIO DE PUNTOS DE AGUA .. 33

1.7 CARACTERIZACIÓN HIDRÁULICA ... 39

1.8 CALIDAD DE AGUA E HIDROGEOQUÍMICA .. 41

1.8.1 Hidrogeoquímica ... 41
1.8.2 Calidad de agua.. 49
1.9 USOS ACTUALES Y DEMANDA DEL RECURSO HÍDRICO SUBTERRÁNEO .58
1.10 ÁREAS DE ESPECIAL IMPORTANCIA HIDROGEOLOGICA .. 59
1.10.1 Zonas de recarga ... 59
1.10.2 Sistemas lenticos y loticos ... 59
1.10.3 Mapa de áreas de especial importancia hidrogeológica 60
1.11 MODELO HIDROGEOLOGICO CONCEPTUAL ... 65
1.12 SISTEMAS ACUÍFEROS OBJETO DE PRIORIZACIÓN ... 65
1.13 NECESIDADES DE INFORMACION Y CONOCIMIENTO DEL COMPONENTE
HIDROGEOLOGICO CON FINES DEL POSTERIOR DESARROLLO DEL MODELO
HIDROGEOLOGICO CONCEPTUAL Y PLAN DE MANEJO AMBIENTAL DE ACUÍFERO
... 66
1.14 CONSIDERACIONES SOBRE LA AFECTACIÓN DE LA ACTIVIDAD MINERA DE
LA COLOSA, SOBRE LOS SISTEMAS ACUÍFEROS PRESENTES EN LA CUENCA 67
1.15 CONCLUSIONES Y RECOMENDACIONES ... 67

LISTA DE TABLAS

Tabla 1. Clasificación de unidades hidrogeológicas .. 15
Tabla 2. Expresiones empíricas para el cálculo de la recarga potencial 19
Tabla 3. Valores promedios de recarga potencial ... 25
Tabla 4. Categorías de vulnerabilidad para el método GOD ... 29
Tabla 5. Inventario de puntos de agua dentro del área de estudio .. 36
Tabla 6. Error aceptable en el balance iónico según la conductividad eléctrica 41
Tabla 7. Error aceptable en balance iónico según sumatoria de aniones 41
Tabla 8. Origen de las principales sustancias disueltas en el agua subterránea (Custodio &
Llamas, Hidrología subterránea, 1976) ... 42
Tabla 9. Balance iónico para los puntos de agua inventariados .. 43
Tabla 10. Uso del agua de acuerdo con el Decreto 1594 de 1984 57
Tabla 11. Sistemas lenticos de la cuenca de río Luisa y otros directos al Magdalena 60
Tabla 12. Clasificación de unidades hidrogeológicas ... 68
Tabla 13. Valores promedios de recargas potencial ... 68
LISTA DE FIGURAS

Figura 1. Mapa de unidades hidrogeológicas de la cuenca del río Luisa y otros directos al Magdalena. .. 17
Figura 2. Leyenda del mapa de unidades hidrogeológicas .. 18
Figura 3. Mapa de precipitación total anual .. 20
Figura 4. Mapa de la temperatura promedio anual 21
Figura 5. Mapa de recarga según Cheeturvedi ... 23
Figura 6. Mapa de recarga según Sehgal ... 24
Figura 7. Mapa de recarga según Turc ... 26
Figura 8. Método GOD para la evaluación de la vulnerabilidad intrínseca 29
Figura 9. Mapa geológico cuenca del río Luisa y otros directos al Magdalena 30
Figura 10. Mapa de unidades Hidrogeológicas .. 31
Figura 11. Mapa de profundidad de tabla de agua ... 32
Figura 12. Categorización mapa de vulnerabilidad intrínseca .. 33
Figura 13. Mapa de vulnerabilidad intrínseca .. 34
Figura 14. Ubicación de puntos de agua .. 38
Figura 15. Cantidad de información hidráulica existente en los distintos expedientes 39
Figura 16. Profundidad de pozo en metros máxima, mínima y promedio de los datos encontrados .. 40
Figura 17. Nivel estático en metros máximo, mínimo y promedio de los datos encontrados 40
Figura 18. Diagrama de Piper .. 44
Figura 19. Diagrama de Piper para los puntos muestreados ... 45
Figura 20. Diagramas de Stiff para los puntos muestreados .. 46
Figura 21. Diagramas de Stiff para los puntos muestreados .. 47
Figura 22. Diagramas de Schoeller para los puntos muestreados .. 48
Figura 23. Diagramas de Schoeller para los puntos muestreados .. 49
Figura 24. Conductividad .. 50
Figura 25. Alcalinidad ... 50
Figura 26. pH .. 51
Figura 27. Calcio .. 52
Figura 28. Cloruros .. 52
Figura 29. Magnesio .. 53
Figura 30. Nitratos .. 53
Figura 31. Sulfatos ... 54
Figura 32. Potasio ... 55
Figura 33. Sodio ... 55
Figura 34. Coliformes fecales ... 56
Figura 35. Coliformes totales ... 56
Figura 36. Usos del agua para la cuenca del río Luisa y otros directos al Magdalena de acuerdo al Decreto 1594 de 1984 .. 59
Figura 37. Sistemas lenticos cuenca del río Luisa y otros directos al Magdalena 62
Figura 38. Leyenda del mapa de sistemas lenticos .. 63
Figura 39. Mapa de zonas de especial importancia hidrogeológica ... 64
Figura 40. Modelo hidrogeológico conceptual .. 66
LISTA DE ANEXOS

Anexo 1. Mapas
Base - Digital
Finales según lo solicita la guía - Digital

Anexo 2. Inventario de puntos de agua
Inventario puntos de agua - Digital

Anexo 3. Expedientes consultados del ANLA
Correspondencia enviada - Digital
Correspondencia recibida - Digital
Expedientes consultados en el ANLA - Digital

Anexo 4. Expedientes consultados de CORTOLIMA
Correspondencia enviada - Digital
Correspondencia recibida - Digital
Expedientes consultados en CORTOLIMA - Digital
Resumen de expedientes consultados en CORTOLIMA - Digital

Anexo 5. Solicitud información municipal
Respuesta de Alcaldías - Digital
Oficios emitidos a las Alcaldías - Digital

LISTA DE MAPAS

GE374-PLC-PSIG-EHG-001-00 Mapa de áreas de especial importancia hidrogeológica
GE374-PLC-PSIG-GE-001-00 Mapa geología básica con fines de ordenación de cuencas hidrográficas
GE374-PLC-PSIG-HG-001-01 Mapa de unidades hidrogeológicas
GE374-PLC-PSIG-LAP-001-00 Mapa de profundidad de la tabla de agua
GE374-PLC-PSIG-MHG-001-00 Modelo hidrogeológico conceptual
GE374-PLC-PSIG-PRC-000-00 Mapa precipitación anual
GE374-PLC-PSIG-TMP-000-00 Mapa temperatura anual
GE374-PLC-PSIG-VIA-001-00 Mapa de vulnerabilidad intrínseca a la contaminación
GE374-PLC-PSIG-ZRS-001-00 Mapa de estimación de la recarga hídrica potencial según la expresión de Sehgal 1973
GE374-PLC-PSIG-ZRT-001-00 Mapa de estimación de la recarga hídrica potencial según la expresión de Turc 1954
GE374-PLC-PSIG-ZRV-001-00 Mapa de estimación de la recarga hídrica potencial según la expresión de Cheeturvedi 1988
GE374-SPC-PSIG-SLE-001-00 Salida grafica sistemas lenticos
1. HIDROGEOLOGÍA

Como es sabido, en la actualidad la demanda de agua potable aumenta cada día, tanto así, que las fuentes de agua superficial no se dan abasto para satisfacer las necesidades básicas de este recurso, ya que sea por escases o por el estado de deterioro, el cual hace incosteable su tratamiento previo para habilitarla a sus diferentes usos. Ante esta situación el agua subterránea se presenta como una alternativa para suplir las necesidades por lo cual es necesario realizar la caracterización hidrogeológica de las unidades geológicas que tienen manifestación en el área de la cuenca.

Geográficamente la zona de estudio se encuentra en el departamento del Tolima, abarcando los municipios de Espinal, Flandes, Guamo, San Luis, Rovira y Valle de San Juan. Estos municipios, de acuerdo con el ENA 2014 realizado por el IDEAM, presentan una vulnerabilidad por disponibilidad de agua moderada, con un índice de escases de hasta un 10%, por esta razón el agua subterránea presente en estas zonas podría ser una fuente alternativa para suplir esta necesidad.

De manera general la zona de estudio se encuentra ubicada en la Provincia Hidrogeológica del Valle Alto del Magdalena (Vargas et al., 2013), macrocuenca limitada por las estribaciones de las Cordilleras Central y Oriental, y cuya importancia hidrogeológica inicia cuando en el mioceno se depositaron las secuencias más importantes por sus características litológicas y comportamiento hidráulico correspondientes en primer lugar al grupo Honda caracterizado por una secuencia granodecreciente de los depósitos de canal resultantes de controles inherentes al sistema fluvial como avulsión, migración lateral, cambios en disponibilidad de energía o material a los sistemas fluviales y pueden incluir factores tectónicos como levantamiento, subsidencia o vulcanismo.

Durante el Plioceno-Cuaternario se presenta un levantamiento con incremento de la actividad volcánica en la Cordillera Central. Enormes cantidades de sedimentos volcanoclásticos (lahares e ignimbritas) rellenaron el valle especialmente hacia la parte sur del Valle Superior del Magdalena, dando como origen a los depósitos cuaternarios predominantes en el área los cuales corresponden principalmente a abanicos de origen volcánico, volcanoclástico, glacio-fluvial, y fluvial, constituyendo las unidades con mayor potencial hidrogeológico en el área de la cuenca hidrográfica del Río Luisa.

Puntualmente dentro de la Provincia Hidrogeológica el área de la Cuenca Hidrográfica se encuentra ubicada en los Sistemas de Acuíferos de Ibagué, donde se pueden clasificar tres grupos de unidas acuíferas, los cuales corresponden a Acuíferos en los cuales la porosidad primaria es intergranular donde se destacan los depósitos de abanicos fluvio-volcánicos; Acuíferos en rocas consolidadas con porosidad primaria y fisuradas con porosidad secundaria, se los cuales salvan las Formaciones Honda y Gualanday; y las rocas cristalinas, granulares y/o fisuradas que forman acuíferos insignificantes con recursos limitados o sin recursos, donde se reconocen los basamentos ígneos metamórficos y sedimentos cretácicos predominantemente arcillosos.

Ahora bien, tomando como base la información geológica, geomorfológica, climatológica desarrollada para este trabajo, así como la información secundaria recopilada, se procede a realizar la identificación y caracterización de las unidades hidrogeológicas presentes en el área de la cuenca hidrográfica del río Luisa y otros directos al Magdalena.
En el área de la cuenca hidrográfica del Río Luisa y otros directos al Magdalena existen unidades geológicas con buenas aptitudes acuíferas cuyas características petrofísicas permiten que a través de ellas se presente flujo y se almacene el agua. Estas unidades corresponden principalmente a depósitos cuaternarios con diferentes tamaños de grano y distintos grados de compactación y rocas sedimentarias de formaciones geológicas cretácicas, paleógenas y neógenas, compuestas por arenisca, conglomerados, calizas y lodolitas.

Es de resaltar que dentro de la cuenca los depósitos de abanicos (Abanico del Guamo y Abanico del Espinal) constituyen las unidades geológicas más aptas para el flujo y el almacenamiento de agua, ya que la heterogeneidad de los materiales que lo componen, su gran extensión y la estratigrafía de la zona, propician la formación de acuíferos libres de recarga directa.

1.1 UNIDADES HIDROESTRATÍGRAFICAS

A partir de las características geológicas, litológicas y estructurales de las unidades que conforman el área de estudio, se generó una clasificación regional dependiendo del potencial hídrico de las formaciones geológicas, condiciones de porosidad, permeabilidad, disposición de las rocas y fracturas o espaciamiento intergranular.

Estas características permiten inferir las condiciones de las unidades geológicas presentes como posibles reservorios de aguas subterráneas.

De manera general se observa un alto potencial hidrogeológico en la zona debido al gran número de estructuras geológicas presentes, lo que favorece la formación de permeabilidad secundaria por fracturamiento en las rocas aflorantes en el área.

A continuación, se presenta una descripción de cada una de las unidades identificadas.

1.1.1 Gneises y anfibolitas de tierradentro (PCAn)

Rocas precámbricas compuestas principalmente por gneises y anfibolitas de grado medio a alto de metamorfismo, se presentan poco fracturadas, poco meteorizadas, y comprenden una porción pequeña al occidente del área. De acuerdo a su origen no presenta porosidad ni espacios vacíos, y de acuerdo a su condición poco fracturada y su extensión limitada, no se dan las condiciones necesarias para que se produzca permeabilidad secundaria, por lo cual esta unidad se cataloga hidrogeológicamente como acuífugos.

1.1.2 Stock Granítico (Pg)

Rocas paleozoicas correspondientes a un cuerpo intrusivo de naturaleza granodiorítica predominantemente con alto contenido de cuarzo y feldespatos, presentan textura fanerítica, moderadamente meteorizadas y poco fracturadas. De acuerdo a su origen no presenta porosidad ni espacios vacíos, y de acuerdo a su condición poco fracturada no presenta permeabilidad secundaria, por lo cual esta unidad se cataloga hidrogeológicamente como acuífugos.

FASE DE DIAGNÓSTICO

Hidrogeología
1.1.3 Formación Luisa (Trl)

Rocas sedimentarias del Triásico, compuestas principalmente por conglomerados tipo brecha con algo de metamorfismo, con clastos angulares de rocas volcánicas e intrusivas, en una matriz de arena fina, con empaquetamiento muy denso (empaquetamiento saturado), por lo cual se ve disminuida su porosidad. Se presenta muy poco meteorizada y poco fracturada por tal motivo no presenta permeabilidad secundaria. De acuerdo a su empaquetamiento y al metamorfismo sufrido, no presenta condiciones para almacenar y transmitir agua, por lo cual esta unidad se cataloga hidrogeológicamente como un acuífugo.

1.1.4 Formación Prepayandé (JTrpp)

Rocas sedimentarias del período Triásico-Jurásico, compuestas principalmente por lutitas altamente meteorizadas y fracturadas, con alternancias de areniscas arcósicas de grano fino y cemento silíceo, masivas con espesores considerables. De acuerdo a estas características, esta formación podría conformar acuíferos confinados a semiconfinados en las areniscas (rocas reservorio) las cuales se encuentran alternando con las lutitas (roca sello); sin embargo, el alto grado de litificación de las areniscas, el cemento silíceo y el tamaño de grano muy fino, no le confieren una buena permeabilidad primaria. Por lo cual esta formación podría clasificarse como Acuitardos a Acuícludos.

1.1.5 Formación Payandé (Calizas) (JTrpc)

Rocas sedimentarias compuestas principalmente por calizas en bancos potentes con algunas intercalaciones de limolitas negras en paquetes delgados. Las calizas son compactas poco meteorizadas, algo fracturadas y diaclasadas. Los bancos de calizas podrían comportarse como acuíferos y al estar intercalados con rocas de grano fino se podrían clasificar como confinados, con predominio de permeabilidad secundaria a través de fracturas, cavas y dolinas, estas últimas observadas mediante la interpretación de las aérfotografías.

1.1.6 Formación Payandé (Mármoles) (JTrpm)

Corresponden a rocas calizas afectadas por metamorfismo de contacto, producto de la intrusión del Stock de Payandé, el cual formó una aureola de metamorfismo en la roca caja circundante. Estas rocas conformadas por Mármoles y skarns no presenta porosidad ni permeabilidad primaria y su bajo grado de fracturamiento no le confieren permeabilidad secundaria por lo que hidrogeológicamente son catalogados como acuífugos.

1.1.7 Formación Pospayandé (Jpp)

Rocas vulcanosedimentarias, compuestas principalmente por conglomerados tipo brecha, con algo de metamorfismo, con clastos angulares de rocas volcánicas e intrusivas, en una matriz de arena fina, con empaquetamiento muy denso (empaquetamiento saturado), por lo cual se ve disminuida su porosidad. Se presenta muy poco meteorizada y poco fracturada por tal motivo no presenta permeabilidad secundaria. De acuerdo a su empaquetamiento y al metamorfismo sufrido, pueden albergar algo de agua, pero no presenta condiciones para transmitir agua, por lo cual, esta unidad se cataloga hidrogeológicamente como acuícludos.
1.1.8 Batolito de Ibagué (Jgdi)

Cuerpo intrusivo del Jurásico compuesto principalmente por granodioritas de textura fanerítica, con alto contenido de cuarzo y feldespatos predominantemente, se encuentra superficialmente altamente meteorizado y presenta un fracturamiento moderado. De acuerdo a su naturaleza se cataloga hidrogeológicamente como acuífugos, sin embargo, puntualmente podría presentar permeabilidad secundaria.

1.1.9 Stock de Payandé (Jp)

Cuerpo intrusivo de características similares al Batolito de Ibagué, compuesto por granodioritas y cuarzodioritas, con el cuarzo como mineral predominante con textura fanerítica; en los afloramientos se observó algo fracturada con diversas orientaciones. De acuerdo a su naturaleza se cataloga hidrogeológicamente como acuífugos, sin embargo, puntualmente podría presentar permeabilidad secundaria.

1.1.10 Formación Caballo (Kic)

Rocas sedimentarias de principios del cretáceo compuestas por areniscas y arenisca calcéreas de grano fino, redondeado a sub redondeado, poco fracturadas en bancos potentes y calizas fosilíferas de grano fino a medio, con algunas intercalaciones delgadas de limolitas calcéreas y margas. De acuerdo a sus condiciones litoeestratigráficas los paquetes arenosos y de calizas podrían comportarse como acuíferos y al estar intercalados con rocas de grano fino se podrían clasificar como confinados o semiconfinados, con predominio de permeabilidad primaria reducida en la areniscas por su alto grado de litificación y permeabilidad secundaria por la formación de cavernas en las rocas calizas, ya que estos paquetes se encuentran altamente litificados.

1.1.11 Calizas de Tetuán (Kit)

Margas y limolitas calcéreas con intercalaciones de calizas finas, muy meteorizadas y altamente fracturadas, texturalmente clasificadas como mudstones (Dunhan, 1962), con algunas concreciones. Los bancos de calizas podrían comportarse como acuíferos con predominio de permeabilidad secundaria a través de fracturas, cavernas.

1.1.12 Shale de Bambuca (Ksb)

Rocas sedimentarias compuestas por lodolitas negras y lutitas calcéreas algo fracturadas, fósiles, en capas de gran espesor, con esporádicas intercalaciones de calizas en capas delgadas. De acuerdo a sus características litoestratigráficas no se presentan las condiciones para que se produzca trasmisión del agua, aunque su nivel almacenamiento puede llegar a ser alto, por lo cual, esta unidad se cataloga como acuícludos.

1.1.13 Formación Hondita y Loma Gorda (Ksh-lg)

Rocas de naturaleza arcillosa correspondientes con shales y lodolitas de color negro con concreciones calcéreas, fósiles, con intercalaciones de calizas finas en capas gruesas, algo fracturadas. De acuerdo a estas características, esta formación podría conformar acuíferos.
confinados a semiconfinados en los paquetes de calizas por la formación de cavernas (rocas reservorio) las cuales se encuentran alternando con las lodolitas (roca sello).

1.1.14 Grupo Olini (Kso)

En el área aflora en capas delgadas a medianas de lodolitas silíceas (liditas), intensamente fracturadas, de color gris medio y amarillo – rojizo por meteorización, en estratos de diversos espesores, que alternan con paquetes potentes de limolitas silíceas. De acuerdo a las condiciones antes mencionadas las rocas de esta formación se considerarían como acuícluidos, sin embargo, su alto grado de fracturamiento le confieren alta permeabilidad secundaria, por lo cual, podrían comportarse como un acuífero confinado localmente.

1.1.15 Niveles de lutitas y Areniscas (Ksla)

Compuestas predominantemente por lodolitas calcáreas color crema y arcillolitas, fisiles, meteorizadas con algunas intercalaciones de areniscas cuarzosas de grano fino con cemento calcáreo en capas delgadas. De acuerdo a sus condiciones litoestratigráficas se podrían clasificar como acuícluidos, rocas que no presentan condiciones de permeabilidad idóneas, aunque localmente se pueden ver afectadas por condiciones estructurales que le conferirían algo de permeabilidad secundaria.

1.1.16 Formación La Tabla (Kslt)

Compuestas predominantemente por areniscas conglomeráticas masivas, de grano grueso, redondeado a sub redondeado, maduras y friables, poco meteorizadas y algo fracturadas, que de acuerdo a sus características pueden formar niveles de acuíferos semiconfinados, aunque el grado de litificación puede afectar la porosidad, disminuyendo de esta manera su permeabilidad primaria.

1.1.17 Formación Seca (KPgs)

Rocas sedimentarias depositadas a finales del cretáceo a principios del Paleógeno, equivalentes a las rocas de la Formación Guaduas en la sabana de Bogotá. En la zona de estudio se encuentra compuestas principalmente por areniscas de grano redondeado a sub redondeado, friables y algo fracturadas en paquetes delgados, intercaladas con limolitas y capas potentes de arcillolitas rojas, fisiles y deleznables con las manos. De acuerdo a estas características, esta formación podría conformar acuitardos.

1.1.18 Formación Gualanday Inferior (Pggi)

Corresponden a arcillolitas fisiles, altamente meteorizadas intercaladas con areniscas cuarzosas de grano medio a grueso, maduras, de buena selección y algunos conglomerados. De acuerdo a las características observadas, esta formación podría conformar acuíferos confinados a semiconfinados en las areniscas (rocas reservorio) las cuales se encuentran alternando con las arcillolitas (roca sello).
1.1.19 Formación Gualanday Superior (Pggs)

Corresponden conglomerados clasto-soportados, meteorizados, con clastos subredondeados a subangulares, polimíctico, Heterométricos (Gránulos, guijarros y cantos) intercalados con areniscas cuarzosas de grano medio a grueso, maduras, de mala selección y arcillolitas altamente meteorizadas y fisiles en capas delgadas. De acuerdo a las características observadas, esta formación podría conformar acuíferos confinados a semiconfinados en las areniscas y los conglomerados (rocas reservorio) las cuales se encuentran alternando con las arcillolitas (roca sello).

1.1.20 Grupo Honda (Ngh)

Rocas del neógeno compuestas por areniscas tobáceas con intercalaciones de lodolitas y algunos lentes de conglomerados. Las areniscas tienden a ser de grano fino a medio con materiales volcánicos asociados (cenizas y pumitas), algo meteorizadas y fracturadas, con un grado de litificación bajo. Por su parte las lodolitas se presentan en paquetes delgados a medianos, poco consolidados y fácilmente disgregables. Las condiciones en las que se encuentran las rocas de esta formación en la zona, se podrían comportar como acuíferos semi confinados de extensión limitada.

1.1.21 Abanicos antiguos (Qa)

Depósitos de material poco compactos, matriz soportados; se componen principalmente de cantos, gravas y bloques de rocas sedimentarias, de formas subredondeadas a redondeadas, en matriz arenosa – arcillosa. Estos depósitos pueden conformar acuíferos libres de extensión limitada.

1.1.22 Abanico del Guamo (Qag)

Abanico de origen fluviolcanico, ya que el material volcánico producto de la actividad del Volcán Cerro Machín se mezcló con depósitos aluviales, otorgándole al Abanico del Guamo una génesis mayormente fluvial que volcánica. Compuesto por gran cantidad de clastos subredondeados a redondeados, heterométricos, mayoritariamente de origen ígneo y metamórfico, matriz soportados en una matriz conformada por arenas, cenizas y pumitas, con algunos lentes netamente arenosos con gran cantidad de clastos de pumitas. Estos depósitos se encuentran suprayaciendo estratos horizontales y subhorizontales de rocas de la formación Honda, la cual fungiría como la roca sello en la parte inferior.

Dicho lo anterior, los depósitos correspondientes al Abanico del Guamo presentan las características idóneas para formar acuíferos libres de recarga directa, de alta producción, los que los convierte en la unidad acuífera por excelencia dentro de la cuenca hidrográfica.

1.1.23 Abanico del Espinal (Qae)

Se trata de un depósito de flujo de lodos volcánicos que ingresó al valle del río Magdalena por la localidad de Gualanday, con los flujos que lograron superar la barrera que lleva su mismo nombre, de composición mayoritariamente volcánica, con clastos heterométricos (< a 40 cm), angulares de composición volcánica (pumitas e ignimbritas) con algunas otras rocas ígneas intrusivas. También se observaron algunos clastos tabulares de rocas
metamórficas. La matriz, la cual se presenta en mayor proporción, es de composición limo arenoso con material volcánico tipo ceniza, la cual ha cementado este material provocando una buena compactación. Por tal motivo, el material tiende a presentarse muy friable y su comportamiento tiende a parecerse a una arenisca fina poco litificada o muy meteorizada.

Al igual que los depósitos del Abanico del Guamo, estos depósitos presentan las condiciones y características adecuadas para formar acuíferos libres de recarga directa.

1.1.24 Depósitos Piroclásticos (Qto)

Depósitos generalmente matriz soportados, compuestos de arcillas y limos, con muy pocos clastos embebidos de arenas, gravas o pumitas. Debido a su composición estos depósitos pueden almacenar gran cantidad de fluido (agua) pero con capacidad media a baja de transmitirlo, por lo cual se clasifica como acuitardos.

1.1.25 Terrazas aluviales intramontanas (Qt)

Están compuestos en su mayoría por depósitos heterométricos de gravas, embebidos en una matriz aren limosa, de color gris a habano, muy disgregada y medianamente compacta. Sus características le confieren un comportamiento de acuífero libre de recarga directa de extensión limitada y producción limitada.

1.1.26 Terrazas aluviales altas (Qta)

Depósitos de gravas heterométricos (subredondeados a subangulares) con diversas tonalidades, compuestas por rocas sedimentarias, bioquímicas, ígneas intrusivas y extrusivas y metamórficas, debido a la gran cantidad de afluentes que confluyen en el Río Magdalena. Generalmente se encuentran embebidas en una matriz aren arcillosa de color gris a gris oscuro, con mala selección. Sus características le confieren un comportamiento de acuífero libre de recarga directa de extensión limitada y producción limitada.

1.1.27 Terrazas aluviales bajas (Qtb)

Se observaron depósitos de gravas heterométricas (redondeadas a subredondeadas) con tonalidades grises, compuestas por rocas sedimentarias, bioquímicas, ígneas intrusivas y extrusivas y metamórficas, debido a la gran cantidad de afluentes que confluyen en el Río Magdalena. Generalmente se encuentran embebidas en una matriz aren arcillosa de color gris a gris oscuro, con selección regular. Sus características le confieren un comportamiento de acuífero libre de recarga directa de extensión limitada y producción limitada.

1.1.28 Terrazas coluviales subrecientes (Qc)

Compuestos principalmente por material proveniente de suelos residuales arenosos, en ocasiones mezclados con cenizas y otros materiales de origen volcánico. En la parte media están compuestos por bloques heterométricos de rocas sedimentarias o bioquímicas, con una matriz arcillo – limosa. Su naturaleza heterogénea favorece la formación de canales preferenciales de conducción de agua, por lo que podrían acumular grandes cantidades de fluido, sin embargo, su trasmisión a través del cuerpo del depósito podría verse disminuida por la matriz fina, por lo cual estos depósitos se clasifican como acuitardos.
1.1.29 Aluviones recientes (Qal)

Depósitos compuestos principalmente por bloques, guijarros y gravas (transportados por tracción), de rocas ígneas intrusivas, bioquímicas y sedimentarias en su mayoría, con una matriz arenoso limo arcillosa con tonalidades que pueden ir desde los grises (ígneas), hasta habano (sedimentarias). Sus características le confieren un comportamiento de acuífero libre de recarga directa de extensión limitada y producción limitada.

1.2 Clasificación Hidrogeológica

A continuación, se presenta la clasificación de las unidades hidrogeológicas de interés siguiendo la nomenclatura propuesta por el IDEAM (2010), la cual se basa en la extensión, porosidad de la unidad y características de permeabilidad asociadas de cada tipo de acuífero.

1.2.1 Tipo I

Corresponde a acuíferos en los cuales la porosidad principal es intergranular.

Unidad I1: Extensivos y altamente productivos conformados por sedimentos cuaternarios no consolidados de ambiente fluvial y lacustre que dan lugar a acuíferos libres o semiconfinados. En esta unidad se clasifican los depósitos de los Abanicos del Guamo y Espinal. Se estima una capacidad específica entre 2.0 l/s/m y 5.0 l/s/m (Ríos, Hincapié, 2004).

Unidad I2: Locales o discontinuos o extensivos, pero solamente moderadamente productivos en sedimentos cuaternarios no consolidados de ambiente fluvial, lacustre o rocas sedimentarias terciarias poco consolidadas clásticas a volcanoclásticas que forman acuíferos libres. En esta unidad se incluyen las terrazas aluviales Antiguas, altas y bajas, los depósitos aluviales recientes y los abanicos antiguos. Se estima una capacidad específica entre 0.05 l/s/m y 1.0 l/s/m (Ríos, Hincapié, 2004).

Unidad I3: Locales o discontinuos con baja productividad en rocas piroclásticas y volcanoclásticas que forman acuíferos libres a semiconfinados. En esta unidad se clasifican los depósitos coluviales sub recientes y los depósitos Piroclásticos. Se estima una capacidad específica promedio menor a 0.05 l/s/m (Ríos, Hincapié, 2004).

1.2.2 Tipo II

Corresponde a acuíferos en rocas consolidadas con porosidad primaria y fisurados con porosidad secundaria o carstificados.

Unidad II1: Extensivos y altamente productivos en rocas sedimentarias clásticas y carbonatadas terciarias y cretácicas consolidadas de ambiente transicional a marino que generalmente conforman acuíferos confinados. En esta unidad se clasifican la formación gualanday miembro superior y miembro inferior. Se estima una capacidad específica promedio mayor de 5.0 l/s/m (Ríos, Hincapié, 2004).
Unidad II2: Locales o discontinuos o extensivos, pero solamente moderadamente productivos en rocas sedimentarias clásticas y carbonatadas terciarias a paleozoicas consolidadas, de ambiente continental a marino que forman acuíferos confinados a semiconfinados. En esta unidad se clasifican para las zonas de estudio las Formaciones Caballos, Hondita y Lomagorda, Honda, La Tabla, La seca, las calizas de la formación Payandé, las calizas de Tetuán y el Grupo Olini. Se estima una capacidad específica entre 1.0 l/s/m y 2.0 l/s/m (Ríos, Hincapié, 2004).

1.2.3 Tipo III

Corresponde a rocas granulares o fisuradas que forman acuíferos insignificantes con recursos limitados o sin recursos (Ríos, Hincapié, 2004)

Unidad III1: Acuíferos menores con recursos locales y limitados en rocas ígneas a metámórficas terciarias a jurásicas y en depósitos no consolidados de ambiente lacustre, marino y deltaico. En esta unidad se clasifican las Formaciones Prepayandé, Postpayandé, Shale de Bambucá y los niveles de lutitas y areniscas. Se estima una capacidad específica entre 1.0 l/s/m y 2.0 l/s/m (Ríos, Hincapié, 2004).

Unidad II2: Complejos ígneo-metamórficos consolidados y fracturados terciarios a precámbricos con baja a ninguna productividad de agua subterránea por Fuentes termales asociadas a la tectónica local. Los cuerpos intrusivos y formaciones metamórficas y metasedimentarias como: Anfibolitas de Tierradentro, Stock granítico, Stock de Payandé, Batolito de Ibagué, la formación Luisa y los mármoles de la formación Payandé. Se estima una capacidad específica promedio menor a 0.05 l/s/m (Ríos, Hincapié, 2004). (Tabla 1).

Tabla 1. Clasificación de unidades hidrogeológicas

<table>
<thead>
<tr>
<th>TIPO DE ACUÍFERO</th>
<th>FORMACIONES GEOLOGÍCAS ASOCIADAS</th>
<th>COLOR</th>
<th>UNIDAD HIDROESTRATIGRÁFICA</th>
<th>COMPORTAMIENTO POSIBLE DE LA UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuíferos en los cuales la porosidad principal es intergranular</td>
<td>Qag - Qae</td>
<td>I1</td>
<td>Acuíferos Libres a semiconfinados.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qa – Qt – Qta – Qtb - Qal</td>
<td></td>
<td>I2</td>
<td>Acuíferos Libres.</td>
</tr>
<tr>
<td></td>
<td>Qto - Qc</td>
<td></td>
<td>I3</td>
<td>Acuíferos Libres a semiconfinados.</td>
</tr>
<tr>
<td>Acuíferos en rocas consolidadas con porosidad primaria y fisurados con porosidad secundaria o carstificados</td>
<td>Pggi - Pggs</td>
<td>I1</td>
<td>Acuíferos Confinados a semiconfinados.</td>
<td></td>
</tr>
<tr>
<td>Rocas granulares o fisuradas que</td>
<td>JTrpp – Jpp – Ksb – Ksla -</td>
<td>III1</td>
<td>Acuitardos a acuícludos</td>
<td></td>
</tr>
</tbody>
</table>
De acuerdo a lo anterior se obtiene el mapa de clasificación de unidades hidrogeológicas el cual se puede observar en la Figura 1. (Ver ANEXO 1 – Mapas - GE374-PLC-PSIG-HG-001-00 que corresponde al MAPA DE UNIDADES HIDROGEOLOGICAS).
Figura 1. Mapa de unidades hidrogeológicas de la cuenca del río Luisa y otros directos al Magdalena.

(Ver digital: L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 1. Mapas\Base)
A continuación, en la Figura 2 se presenta la leyenda del Mapa de unidades Hidrogeológicas.

Figura 2. Leyenda del mapa de unidades hidrogeológicas

<table>
<thead>
<tr>
<th>TIPO DE ACUÍFERO</th>
<th>FORMACIONES GEOLOGÍCAS ASOCIADAS</th>
<th>COLOR</th>
<th>UNIDAD HIDRO ESTRATIGRÁFICA</th>
<th>COMPORTAMIENTO POSIBLE DE LA UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuíferos en los cuales la porosidad principal es intergranular</td>
<td>Qag - Qae</td>
<td>I1</td>
<td></td>
<td>Acuíferos Libres a semiconfinados</td>
</tr>
<tr>
<td></td>
<td>Qa –Qt –Qta –Qtb - Qal</td>
<td>I2</td>
<td></td>
<td>Acuíferos Libres</td>
</tr>
<tr>
<td></td>
<td>Qto - Qc</td>
<td>I3</td>
<td></td>
<td>Acuíferos Libres a semiconfinados</td>
</tr>
<tr>
<td>Acuíferos en rocas consolidadas con porosidad primaria y fisurados con porosidad secundaria o carstificados.</td>
<td>Kit–Kso –Kic –Ksh-ig –Kst– Kpgs - Ngh</td>
<td>II2</td>
<td></td>
<td>Acuíferos confinados a semi confinados y acuitardos</td>
</tr>
<tr>
<td>Rocas granulares o fisuradas que forman acuíferos insignificantes con recursos limitados o sin recursos.</td>
<td>JTrpp –Jpp – Ksb - Ksja</td>
<td>III1</td>
<td></td>
<td>Acuitardos a acuícludos.</td>
</tr>
<tr>
<td></td>
<td>PCAn –Pg –Trl –JT rpm –Jgdi- Jp</td>
<td>III2</td>
<td></td>
<td>Acuífugos</td>
</tr>
</tbody>
</table>

1.3 **DIRECCIÓN DE FLUJO REGIONAL**

La dirección de flujo superficial predominante a nivel regional es de Occidente a Oriente, como el río Luisa y otros directos al Magdalena y las demás corrientes principales de la zona, el cual desemboca en el río Magdalena. De acuerdo a la información secundaria obtenida y las condiciones morfológicas observadas se estima que las direcciones de flujo subterráneo obedecen el mismo patrón de las aguas superficiales.

1.4 **ZONAS DE RECARGA Y DESCARGA**

Las zonas de recarga son áreas conformadas por material con alta permeabilidad primaria, ubicadas en áreas de alta precipitación y con una disposición estructural que favorece la infiltración de agua. Su importancia radica en alimentar acuíferos, algunos de los cuales contribuyen con los caudales de los cuerpos de agua de la zona.

La recarga directa por precipitación, se explica como la infiltración de la lluvia local en áreas de alta permeabilidad y baja pendiente donde en estas superficies constituidas por depósitos aluviales recientes de espesores variables y los depósitos de Abanicos del Guamo y Espinal, que suprayacen niveles semipermeables de rocas terciarias, generan flujos subsuperficiales, que regulan el ciclo hidrológico manteniendo el aporte en épocas de verano.

Las zonas de infiltración agrupan todas las áreas de alta permeabilidad, que se encuentran limitadas por niveles semipermeables superficiales. Son de gran importancia, porque constituyen zonas amortiguadoras de balance hídrico entre las épocas de verano e invierno al retener gran cantidad de agua en la época de lluvias y descargarla gradualmente en épocas de verano.
De acuerdo con lo anterior la recarga de los acuíferos en la cuenca del río Luisa, se efectúa principalmente de manera directa por precipitación y en menor proporción por interconexión hidráulica con los principales cuerpos hídricos existentes alrededor en la zona.

1.4.1 Estimación de la recarga potencial

Para la estimación de la recarga potencial por precipitación, se utilizó algunos autores que han presentado expresiones empíricas para estimar la recarga a partir de la precipitación, y de la temperatura las cuales se muestran en la Tabla 2

![Tabla 2. Expresiones empíricas para el cálculo de la recarga potencial.](image)

Partiendo de los resultados del análisis hidrológico y del balance hídrico de donde se obtuvo la precipitación total anual (Figura 3) (ver ANEXO 5 – Mapas - GE374-PLC-PSIG-PRC-001-00 que corresponde al MAPA DE PRECIPITACIÓN TOTAL ANUAL) y la temperatura media anual (Figura 4) (ver ANEXO 5 – Mapas - GE374-PLC-PSIG-TMP-001-00 que corresponde al MAPA DE LA TEMPERATURA PROMEDIO ANUAL), se realizaron los cálculos respectivos por medio de la utilización de sistemas de información geográfica (SIG). De las figuras mostradas a continuación se puede observar que las partes altas de la cuenca ubicadas al oeste de la misma, presentan la mayor precipitación y las menores temperaturas.

Partiendo de la expresión:

\[r = 1.35 \times (P - 14)^{0.5} \]

Dónde:

- \(r \): Recarga (pulg/año)
- \(P \): Precipitación (pulg/año)

Se obtiene a modo de ejemplo:

\[
\frac{1168.5 \text{ mm}}{\text{año}} = \frac{46.00 \text{ Pulg}}{\text{año}}
\]

\[
r = 1.35 \times (46.00 - 14)^{0.5}
\]

\[
r = 7.63 \frac{\text{Pulg}}{\text{año}}
\]

\[
r = 193.99 \text{ mm/año}
\]

De la expresión anterior se obtiene que la recarga potencial corresponde a valores comprendidos entre el 13.5 % y el 16% de los valores extremos de precipitación observados en el Mapa de Precipitación Total Anual (1168 – 2124 mm), observándose una distribución de las zonas de recarga bastante heterogénea, resaltando que las zonas con mayor recarga corresponden a las partes altas de la cuenca y las zonas de menor recarga corresponden a las zonas bajas donde se encuentran los depósitos cuaternarios de abanicos (Figura 5) (ver ANEXO 1 – Mapas - GE374-PLC-PSIG-ZRV-001-00 que corresponde al MAPA DE ESTIMACIÓN DE LA RECARGA POTENCIAL SEGÚN LA EXPRESIÓN DE CHEETURVEDI 1988).

1.4.1.1 Recarga según la expresión de Sehgal

Partiendo de la expresión:

\[
r = 2.5 \times (P - 16)^{0.5}
\]

Dónde:
- r: Recarga (pulg/año)
- P: Precipitación (pulg/año)

Se obtiene a modo de ejemplo:

\[
\frac{1168.5 \text{ mm}}{\text{año}} = \frac{46.00 \text{ Pulg}}{\text{año}}
\]

\[
r = 2.5 \times (46.00 - 16)^{0.5}
\]

\[
r = 13.69 \frac{\text{Pulg}}{\text{año}}
\]

\[
r = 347.83 \text{ mm/año}
\]

De esta expresión se obtiene que la recarga potencial corresponde a valores comprendidos entre el 24% y el 30% de los valores extremos de precipitación observados en el Mapa de Precipitación Total Anual (1168 – 2124 mm), observándose una distribución homogénea con predominio del intervalo de 390 - 450 mm, el cual se encuentra ocupando la mayor parte del sector central y oriental del área de estudio (Figura 6) (ver ANEXO 1 – Mapas - GE374-PLC-PSIG-ZRS-001-00 que corresponde al MAPA DE ESTIMACIÓN DE LA RECARGA POTENCIAL SEGÚN LA EXPRESIÓN DE SEHGAL 1973).
Figura 5. Mapa de recarga según Cheeturvedi.

1.4.1.2 Recarga según la expresión de Turc

Partiendo de las expresiones:

\[r = P \ast L = 300 + T \ast 25 + T \ast 0.05 \]

Dónde:

- \(r \): Recarga (mm/año)
- \(P \): Precipitación (mm/año)
- \(T \): Temperatura (°C)
- \(L \): Valor dependiente de la temperatura

Se obtiene a modo de ejemplo:

\[
L = 300 + 25.42 \ast 25 + 25.42 \ast 0.05 \\
L = 936.67 \\
r = 1543.20 \ast \\
r = 731.48 \text{ mm/año}
\]

De lo anterior se obtiene que la recarga potencial corresponde a valores comprendidos entre el 33% y el 60% de los valores extremos de precipitación observados en el Mapa de Precipitación Total Anual (1168 – 2124 mm), con valores mínimos de 382.9 mm/año y máximos de 1274.2 mm/año. (Figura 7) (Ver ANEXO 1 – Mapas - GE374-PLC-PSIG-ZRT-001-00 que corresponde al MAPA DE ESTIMACIÓN DE LA RECARGA POTENCIAL SEGÚN LA EXPRESIÓN DE TURC 1954).

De las anteriores expresiones se puede observar que la recarga potencial varía desde el 13.5% al 60% de la precipitación anual dependiendo de la expresión utilizada para su cálculo; cuyos valores promedios se observan a continuación. (Ver Tabla 3).

Tabla 3. Valores promedios de recarga potencial

<table>
<thead>
<tr>
<th>Expresiones de calculo</th>
<th>(R) Cheeturvedi</th>
<th>(R) Sehgal</th>
<th>(R) Turc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje con respecto a la precipitación</td>
<td>13.5%-16%</td>
<td>24%-30%</td>
<td>32%-60%</td>
</tr>
<tr>
<td>Promedio (mm/año)</td>
<td>237</td>
<td>436</td>
<td>766</td>
</tr>
</tbody>
</table>

De las expresiones evaluadas se observa, que la de Ceerturvedi tiende a ser la más conservadora con valores de recarga que oscilan entre el 13.5% y el 16% con respecto a los valores de precipitación con un promedio de 237 mm al año, mientras que la expresión de Turc muestra los valores más altos que varían entre el 32% y 60% en relación con los valores de precipitación, con un promedio de 766 mm al año; sin embargo, la expresión de Sehgal, muestra valores con una media de 436 mm al año con variaciones en referencia a la precipitación que van desde 24% a 30%.
Figura 7. Mapa de recarga según Turc.

De manera general la totalidad de los métodos empleados muestran que las zonas con mayor recarga potencial corresponden a las partes altas de la cuenca y las zonas con menor recarga corresponden a las zonas bajas de la cuenca donde se encuentran los depósitos cuaternarios de los abanicos del Guamo y Espinal principalmente.

De acuerdo a lo anteriormente expuesto se puede deducir que la recarga de los principales sistemas de acuíferos en la zona (Abanico del Guamo, Abanico de Espinal) se da en menor proporción por recarga directa y en mayor proporción por transferencia a partir de formaciones de transito ubicadas en la parte alta.

1.4.2 Zonas de descarga

Agrupa aquellas áreas donde la tabla de agua intercepta la superficie del terreno dando origen a corrientes superficiales como flujo base de los principales cuerpos de agua de la zona. Para esta cuenca las zonas de descarga corresponden al río Luisa y otros directos al Magdalena en la parte alta y media de la cuenca y en la parte baja de la cuenca el río Magdalena.

Así mismo otra posible fuente de descarga puede corresponder a los pozos de agua de la comunidad ya sean de tipo doméstico o para uso agrícola, ya que la parte baja de la cuenca se caracteriza por ser una zona de cultivos de arroz principalmente, por lo cual los puntos de captación de aguas subterráneas se ubicarían principalmente en las zonas comprendidas por los abanicos del Guamo y de Espina, los cuales constituyen los principales acuíferos de la cuenca.

1.5 VULNERABILIDAD INTRÍNSECA DE ACUÍFEROS

La vulnerabilidad de los acuíferos a la contaminación se ha considerado una medida cualitativa de la facilidad o dificultad que tiene un contaminante dispuesto sobre la superficie del terreno para llegar al acuífero mediante infiltración a través de la zona no saturada (Ingeominas, 1997). Para evaluarlo el Ministerio de Ambiente y Desarrollo Sostenible (MADS) ha expuesto una “Propuesta Metodológica para la Evaluación de la Vulnerabilidad Intrínseca de los Acuíferos a la Contaminación” (MinAmbiente, Guía metodológica para la formulación de planes de manejo ambiental de acuíferos, 2014).

MinAmbiente (2010), establece cuatro enfoques (metodologías) de evaluación de la vulnerabilidad de los acuíferos a contaminación, el uso de uno u otro radica en la información disponible para su elaboración. Entre los métodos disponibles se encuentran: i) Modelos de simulación, ii) Métodos estadísticos, iii) Métodos de superposición e índices (o paramétricos) y iv) ambientes hidrogeológicos.

Dentro de los métodos de superposición e índices (o paramétricos), MinAmbiente (2010) sintetiza las metodologías disponibles en la literatura y los clasifica en cuatro: (1) los métodos de matriz, que utilizan parámetros muy seleccionados y sólo tienen aplicabilidad local. (2) Los métodos de puntuación (RS), en los que cada parámetro está dividido en clases a las que se atribuye una puntuación, dentro de los que destaca la metodología de GOD. (3) Los métodos de puntuación y ponderación (PCSM), en los que además de asignar una puntuación cada parámetro es multiplicado por un factor ponderador. Las metodologías
más destacadas son DRASTIC (6), SINTACS (7), EPIK (8) y GALT. (4) Los métodos de relaciones analógicas (AR), como el AVI.

Para el caso de este estudio se utilizará el método GOD debido a la ausencia de información necesaria para la aplicación de otros métodos, los cuales requieren una mayor cantidad de datos y parámetros.

1.5.1 Metodología GOD

El sistema de indexación GOD, propuesto por Foster (1987), es aplicable en áreas de trabajo con escasa información, con irregular distribución de datos o con incertidumbre de la información. Esta metodología comprende tres parámetros: G, O y D; cuyos valores son asignados de acuerdo con la contribución en la defensa a la contaminación los cuales se describen a continuación.

- **G. (Groundwater occurrence)**: Corresponde al grado de confinamiento hidráulico con la identificación del tipo de acuífero, su índice puede variar entre 0 y 1. El modo de ocurrencia varía entre la ausencia de acuíferos (evaluado con índice 0) en el extremo izquierdo y la presencia de un acuífero libre o freático (evaluado como índice 1) en el extremo derecho, pasando por acuíferos artesianos, confinados y semiconfinados.

- **O. (Overall aquifer class)**: Corresponde a la caracterización de la zona no saturada del acuífero o de las capas confinantes. Los índices más bajos (0,4) corresponden a los materiales no consolidados, mientras que los más altos (0,9 – 1,0) corresponden a rocas compactas fracturadas o karstificadas.

- **D: (Depth)**: Se refiere a la profundidad del nivel freático en acuíferos libres o a la profundidad del techo del acuífero, en los confinados. Los índices más bajos (0,6) corresponden a acuíferos libres con profundidad mayor a 50 m; mientras que los índices altos (1,0) corresponden a acuíferos que independientemente de la profundidad se encuentran en medios fracturados. Para el caso de los acuíferos libres la profundidad del nivel estático está sujeta a la oscilación natural.

El índice de vulnerabilidad GOD se obtiene, entonces, de multiplicar los valores asignados a cada parámetro:

\[i\text{V}_{\text{GOD}} = G \times O \times D \]

El \(i\text{V}_{\text{GOD}} \) puede variar entre 0,1 y 1,0, obteniendo las categorías de vulnerabilidad intrínseca de los acuíferos a la contaminación, presentados en la Tabla 4.
Tabla 4. Categorías de vulnerabilidad para el método GOD

<table>
<thead>
<tr>
<th>iV_{GOD}</th>
<th>VULNERABILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7-1.0</td>
<td>Extrema</td>
</tr>
<tr>
<td>0.5-0.7</td>
<td>Alta</td>
</tr>
<tr>
<td>0.3-0.5</td>
<td>Moderada</td>
</tr>
<tr>
<td>0.1-0.3</td>
<td>Baja</td>
</tr>
<tr>
<td><0.1</td>
<td>Muy baja</td>
</tr>
</tbody>
</table>

Figura 8. Método GOD para la evaluación de la vulnerabilidad intrínseca.

Fuente: Formulación POMCA río Luisa y otros directos al Magdalena. Consorcio Vino Tinto y Oro, 2017
Figura 10. Mapa de unidades Hidrogeológicas.

Ver digital L\correcciones\2. FASE DE DIAGNÓSTICO\3.3 HIDROGEOLOGIA\ANEXOS\Anexo 1. Mapas\Finales_Segun_Guia\ 7 Hidrogeología LODM.pdf
Figura 11. Mapa de profundidad de tabla de agua

Fuente: Modificado (Ríos, Hincapié, 2002)
Para la cuenca del río Luisa y otros directos al Magdalena se ponderó cada uno de los parámetros de la metodología GOD, de acuerdo a las características litológicas (Figura 9) (ver ANEXO 1 – Mapas - GE374-PLC-PSIG-GE-001-01 que corresponde al MAPA DE GEOLOGÍA BÁSICA CON FINES DE ORDENACIÓN DE CUENCAS HIDROGRÁFICAS), hidrogeológicas (Figura 10) (ver ANEXO 1 – Mapas - GE374-PLC-PSIG-HG-001-00 que corresponde al MAPA DE UNIDADES HIDROGEOLOGÍCAS) y profundidad de la lámina de agua. (Figura 11) (Ver ANEXO 1 – Mapas - GE374-PLC-PSIG-LAP-001-00 que corresponde al MAPA DE PROFUNDIDAD DE LA TABLA DE AGUA).

De la Figura 13 (ver ANEXO 1 – Mapas - GE374-PLC-PSIG-VIA-001-00 que corresponde al MAPA DE VULNERABILIDAD INTRÍNSECA) se puede observar que la parte baja de la cuenca correspondiente a los depósitos cuaternarios de los abanicos del Guamo y Espinal presentan una vulnerabilidad alta en la mayor parte de extensión. Adicionalmente se destaca que las zonas donde se encuentra aflorando el Grupo Honda y algunas formaciones Cretáceas presentan una vulnerabilidad moderada. En la Figura 12 se puede observar la leyenda de este mapa.

Figura 12. Categorización mapa de vulnerabilidad intrínseca.

<table>
<thead>
<tr>
<th>Código</th>
<th>Vulnerabilidad</th>
<th>Símbolo</th>
<th>Área Ha.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ninguna</td>
<td></td>
<td>25848,19</td>
<td>23,899</td>
</tr>
<tr>
<td>2</td>
<td>Baja</td>
<td></td>
<td>16419,26</td>
<td>15,181</td>
</tr>
<tr>
<td>3</td>
<td>Moderada</td>
<td></td>
<td>14704,41</td>
<td>13,596</td>
</tr>
<tr>
<td>4</td>
<td>Alta</td>
<td></td>
<td>51181,27</td>
<td>47,322</td>
</tr>
<tr>
<td>5</td>
<td>Extrema</td>
<td></td>
<td>1,73</td>
<td>0,002</td>
</tr>
</tbody>
</table>

1.6 INVENTARIO DE PUNTOS DE AGUA

Se realizó una revisión detallada de expedientes procedentes de la ANLA y CORTOLIMA, así como del estudio “Exploración del Recurso Hídrico Subterráneo en el sur del departamento del Tolima” realizado por Ingeominas (Actual SGC) en el año 1996”, donde se encontraron un total de 82 puntos de agua, de los cuales 61 se encuentran dentro de los límites del área de estudio, estos puntos y sus coordenadas se pueden observar en la Tabla 5, así como en la Figura 14.

Es destacar que adicionalmente se realizó la solicitud de información relativa a puntos de agua a las diferentes alcaldías de los municipios que conforman el área de la Cuenca Hidrográfica, de lo cual no se obtuvo información que pudiera ser utilizada dentro del estudio. (Ver Anexo 5. Solicitud información municipios).
Figura 13. Mapa de vulnerabilidad intrínseca

<table>
<thead>
<tr>
<th>Código</th>
<th>Vulnerabilidad</th>
<th>Símbolo</th>
<th>Área Ha.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ninguna</td>
<td>🟢</td>
<td>25846.19</td>
<td>20.899</td>
</tr>
<tr>
<td>2</td>
<td>Baja</td>
<td>🟠</td>
<td>15419.26</td>
<td>12.151</td>
</tr>
<tr>
<td>3</td>
<td>Moderada</td>
<td>🟡</td>
<td>14734.41</td>
<td>11.996</td>
</tr>
<tr>
<td>4</td>
<td>Alta</td>
<td>🟢️</td>
<td>81181.27</td>
<td>64.322</td>
</tr>
<tr>
<td>5</td>
<td>Extrema</td>
<td>🟥</td>
<td>1.73</td>
<td>0.002</td>
</tr>
</tbody>
</table>
De manera general de los documentos relacionados a los puntos de agua se extrajo información referente a características fisicoquímicas, hidráulicas y el tipo de uso para cada punto de agua. Cabe resaltar, que se encontraron vacíos en la información, ya que no todos los expedientes contaban con la información necesaria para realizar la caracterización hidráulica, de calidad de agua e hidrogeoquímica.

Específicamente de los 61 puntos, 35 fueron obtenidos a partir de los estudios realizados por Ingeominas en el año 1996, de los cuales 15 puntos presentan información que puede ser utilizada para la caracterización hidrogeoquímica, y ninguno presenta información de parámetros hidráulicos fuera de profundidad de pozo y algunos datos de profundidad del nivel estático. Es de resaltar que la información aportada por el estudio anteriormente citado tiene más de 20 años y solo abarca el sector sur oriental del área de estudio.

De la ANLA se obtuvo información de expedientes de 13 puntos de agua dentro del área de estudio, de los cuales 4 de ellos presentan datos necesarios para la caracterización hidrogeoquímica. Así mismo ninguno de estos presenta datos hidráulicos a excepción de 2 puntos que presentan datos de profundidad de la captación. (Ver Anexo 3. Expedientes ANLA).

A partir de los expedientes de concesiones de aguas subterráneas obtenidos de la sede principal y de las oficinas territoriales de CORTOLIMA se obtuvo información de 13 puntos de agua, de los cuales solo 2 presentaban información para la caracterización hidrogeoquímica, y 10 presentaban información de caudales máximos de extracción, así como de datos de profundidad del nivel estático. (Anexo 4. Expedientes de CORTOLIMA).

En cuanto a la calidad de agua de los 61 puntos de agua, 55 de estos presentaban algunos parámetros que permitieran la determinación de la actitud de las aguas del área de estudio.

De acuerdo a lo anterior, dentro del anexo 3 se encuentran los soportes de los expedientes de la ANLA. El anexo 4 corresponde a los expedientes de CORTOLIMA y dentro de este anexo en la carpeta expedientes se encuentran los soportes de los mismos. Finalmente, en el anexo 5 se encuentran los oficios solicitando información a todas las alcaldías y sus respectivas respuestas.

De los 61 puntos de agua inventariados a partir de la información disponible 34 corresponden a aljibes, 16 a pozos profundos y 11 puntos no presentaban información que permitiera categorizarlos dentro de las anteriores.
Tabla 5. Inventario de puntos de agua dentro del área de estudio

<table>
<thead>
<tr>
<th>ID</th>
<th>Coord. Este</th>
<th>Coord. Norte</th>
<th>Tipo</th>
<th>Código o número de expediente</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGC-001</td>
<td>890320</td>
<td>944799</td>
<td>Aljibe</td>
<td>263 I C-02</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-002</td>
<td>888985</td>
<td>944262</td>
<td>Aljibe</td>
<td>264 I C-03</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-003</td>
<td>893173</td>
<td>940595</td>
<td>Aljibe</td>
<td>264 I C-06</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-004</td>
<td>900951</td>
<td>940197</td>
<td>Aljibe</td>
<td>264 I D-01</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-005</td>
<td>900002</td>
<td>941024</td>
<td>Pozo</td>
<td>264 I D-02</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-006</td>
<td>898079</td>
<td>942925</td>
<td>Aljibe</td>
<td>264 I D-03</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-007</td>
<td>896414</td>
<td>943596</td>
<td>Aljibe</td>
<td>264 I D-05</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-008</td>
<td>903746</td>
<td>941270</td>
<td>Aljibe</td>
<td>264 I D-06</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-009</td>
<td>905800</td>
<td>942726</td>
<td>Aljibe</td>
<td>264 I D-07</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-011</td>
<td>906027</td>
<td>944248</td>
<td>Aljibe</td>
<td>264 I D-08</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-012</td>
<td>906830</td>
<td>945416</td>
<td>Pozo</td>
<td>264 I D-09</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-013</td>
<td>909948</td>
<td>944875</td>
<td>Aljibe</td>
<td>264 I D-10</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-014</td>
<td>900591</td>
<td>941229</td>
<td>Aljibe</td>
<td>264 I D-11</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-018</td>
<td>908147</td>
<td>941692</td>
<td>Aljibe</td>
<td>264 I D-12</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-017</td>
<td>900125</td>
<td>940962</td>
<td>Pozo</td>
<td>264 I D-13</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-016</td>
<td>896370</td>
<td>941026</td>
<td>Aljibe</td>
<td>264 I D-14</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-019</td>
<td>910778</td>
<td>940839</td>
<td>Pozo</td>
<td>264 I D-15</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-018</td>
<td>908147</td>
<td>941692</td>
<td>Aljibe</td>
<td>264 I D-16</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-019</td>
<td>910778</td>
<td>940839</td>
<td>Pozo</td>
<td>264 I D-15</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-020</td>
<td>911617</td>
<td>942731</td>
<td>Aljibe</td>
<td>264 II C-01</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-021</td>
<td>915290</td>
<td>943051</td>
<td>Aljibe</td>
<td>264 II C-03</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-022</td>
<td>914002</td>
<td>941238</td>
<td>Aljibe</td>
<td>264 II C-04</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-023</td>
<td>900309</td>
<td>937895</td>
<td>Pozo</td>
<td>264 III B-06</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-024</td>
<td>901191</td>
<td>936321</td>
<td>Pozo</td>
<td>264 III B-07</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-025</td>
<td>897085</td>
<td>939703</td>
<td>Aljibe</td>
<td>264 III B-12</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-026</td>
<td>901057</td>
<td>938636</td>
<td>Aljibe</td>
<td>264 III B-14</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-027</td>
<td>903161</td>
<td>938575</td>
<td>Aljibe</td>
<td>264 III B-26</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-028</td>
<td>905904</td>
<td>938696</td>
<td>Pozo</td>
<td>264 III B-28</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-029</td>
<td>908975</td>
<td>938455</td>
<td>Aljibe</td>
<td>264 III B-29</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-030</td>
<td>907042</td>
<td>938541</td>
<td>Aljibe</td>
<td>264 III B-30</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-031</td>
<td>899774</td>
<td>938370</td>
<td>Aljibe</td>
<td>264 III B-31</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-032</td>
<td>912225</td>
<td>936998</td>
<td>Pozo</td>
<td>264 IV A-01</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-033</td>
<td>912014</td>
<td>939543</td>
<td>Aljibe</td>
<td>264 IV A-02</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-034</td>
<td>912159</td>
<td>937374</td>
<td>Aljibe</td>
<td>264 IV A-03</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>SGC-035</td>
<td>910867</td>
<td>935102</td>
<td>Aljibe</td>
<td>264 IV A-04</td>
<td>INGEOMINAS 1996</td>
</tr>
<tr>
<td>ANLA-004</td>
<td>894850</td>
<td>944781</td>
<td>Aljibe</td>
<td>LAM 1800</td>
<td>ANLA</td>
</tr>
<tr>
<td>Código</td>
<td>Código AE</td>
<td>Código LAM</td>
<td>Tipo</td>
<td>Código CE</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>ANLA-005</td>
<td>895149</td>
<td>944392</td>
<td>Aljibe</td>
<td>LAM 1800</td>
<td></td>
</tr>
<tr>
<td>ANLA-007</td>
<td>908275</td>
<td>950860</td>
<td></td>
<td>LAM 2537</td>
<td></td>
</tr>
<tr>
<td>ANLA-008</td>
<td>908299</td>
<td>951038</td>
<td></td>
<td>LAM 0747</td>
<td></td>
</tr>
<tr>
<td>ANLA-009</td>
<td>908318</td>
<td>950998</td>
<td></td>
<td>LAM 0747</td>
<td></td>
</tr>
<tr>
<td>ANLA-010</td>
<td>908531</td>
<td>956988</td>
<td></td>
<td>LAM 0747</td>
<td></td>
</tr>
<tr>
<td>ANLA-011</td>
<td>909167</td>
<td>957719</td>
<td></td>
<td>LAM 2028</td>
<td></td>
</tr>
<tr>
<td>ANLA-012</td>
<td>909231</td>
<td>953955</td>
<td></td>
<td>LAM 2028</td>
<td></td>
</tr>
<tr>
<td>ANLA-013</td>
<td>910006</td>
<td>957622</td>
<td></td>
<td>LAM 2028</td>
<td></td>
</tr>
<tr>
<td>ANLA-014</td>
<td>910010</td>
<td>957624</td>
<td></td>
<td>LAM 2028</td>
<td></td>
</tr>
<tr>
<td>ANLA-015</td>
<td>910638</td>
<td>958024</td>
<td></td>
<td>LAM 2028</td>
<td></td>
</tr>
<tr>
<td>ANLA-016</td>
<td>911484</td>
<td>958656</td>
<td></td>
<td>LAM 2028</td>
<td></td>
</tr>
<tr>
<td>ANLA-017</td>
<td>911750</td>
<td>958785</td>
<td></td>
<td>LAM 2028</td>
<td></td>
</tr>
<tr>
<td>COR-001</td>
<td>912675</td>
<td>954662</td>
<td>Aljibe</td>
<td>2689</td>
<td></td>
</tr>
<tr>
<td>COR-003</td>
<td>890800</td>
<td>957907</td>
<td>Aljibe</td>
<td>3640</td>
<td></td>
</tr>
<tr>
<td>COR-005</td>
<td>908300</td>
<td>951032</td>
<td>Pozo</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>COR-010</td>
<td>901980</td>
<td>954886</td>
<td>Aljibe</td>
<td>3778</td>
<td></td>
</tr>
<tr>
<td>COR-011</td>
<td>901714</td>
<td>955300</td>
<td>Pozo</td>
<td>3778</td>
<td></td>
</tr>
<tr>
<td>COR-014</td>
<td>912874</td>
<td>962874</td>
<td>Pozo</td>
<td>3010</td>
<td></td>
</tr>
<tr>
<td>COR-015</td>
<td>913364</td>
<td>957653</td>
<td>Pozo</td>
<td>3099</td>
<td></td>
</tr>
<tr>
<td>COR-016</td>
<td>916136</td>
<td>958654</td>
<td>Aljibe</td>
<td>12618</td>
<td></td>
</tr>
<tr>
<td>COR-017</td>
<td>910438</td>
<td>961112</td>
<td>Pozo</td>
<td>4050</td>
<td></td>
</tr>
<tr>
<td>COR-020</td>
<td>916469</td>
<td>961957</td>
<td>Pozo</td>
<td>143422</td>
<td></td>
</tr>
<tr>
<td>COR-022</td>
<td>911903</td>
<td>937454</td>
<td>Pozo</td>
<td>3149</td>
<td></td>
</tr>
<tr>
<td>COR-024</td>
<td>903632</td>
<td>941373</td>
<td>Aljibe</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>COR-029</td>
<td>905867</td>
<td>945797</td>
<td>Pozo</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

Figura 14. Ubicación de puntos de agua

1.7 CARACTERIZACIÓN HIDRÁULICA

Dentro de los 61 expedientes que se encuentran dentro del área de estudio (35 de INGEOMINAS 1996, 13 de la ANLA y 13 de CORTOLIMA) donde se encontraron principalmente datos de profundidad de pozo y nivel estático como se muestra en la Figura 15.

Figura 15. Cantidad de información hidráulica existente en los distintos expedientes

En la Figura 16 y Figura 17 se pueden observar los niveles máximos, mínimos y promedio de las características que se encontraron con mayor frecuencia dentro de los expedientes (Profundidad de pozo y nivel estático), donde se obtuvo que las profundidades de los aljibes varían entre 2 m y 18 m, y los pozos varían entre 21 y 146 m.

Del mismo modo se determinó que el nivel estático promedio de los aljibes es de 4.65 m y el de los pozos corresponde a 20 m.

Puntualmente a partir de información de 10 expedientes de concesiones de la corporación se determinó que el caudal promedio de extracción para aljibes (5 datos) es de 0.69 l/s con mínimos de 0.05 l/s y máximos de 1.3 l/s. Así mismo los puntos de agua tipo pozos (5 datos) presentan caudales de captación máximo de 9.5 l/s y mínimos de 3.5 l/s con promedio de 4 l/s.
Figura 16. Profundidad de pozo en metros máxima, mínima y promedio de los datos encontrados

Figura 17. Nivel estático en metros máximo, mínimo y promedio de los datos encontrados

1.8 CALIDAD DE AGUA E HIDROGEOQUÍMICA

Para el análisis hidrogeoquímico y de calidad de agua se tomaron en cuenta un total de 61 puntos de captación, de los cuales 21 poseen información de parámetros necesarios para la caracterización hidrogeoquímica y 55 cuentan con información de algunos parámetros que pueden ser utilizados para determinar la calidad de agua, resaltando que ninguno de los 55 puntos mencionados posee los parámetros completos para los análisis.

1.8.1 Hidrogeoquímica

1.8.1.1 Balance iónico

El balance de iones es la verificación de que la suma de aniones es aproximadamente igual a la suma de mili-equivalentes de cationes; esto último aprovechando la electro-neutralidad del agua, propiedad que puede distorsionarse si existen ciertos fenómenos. El cálculo del balance de iones (o balance de carga) normalmente es obtenido como un porcentaje tomando la diferencia de la concentración equivalente de cationes y aniones y dividiendo entre la suma de los mismos, esto tomado 100 veces para obtener un porcentaje.

\[
\text{Error(\%)} = \frac{\sum \text{cationes} - \sum \text{aniones}}{\sum \text{cationes} + \sum \text{aniones}} \times 100
\]

Los rangos de error para aceptar o no el análisis de una muestra de agua, dependen según la literatura, del valor de conductividad eléctrica (Custodio & Llamas, Hidrología subterránea, 1976), o de la sumatoria de aniones (Crites & Tchobanoglous, 2000). Las tablas (Tabla 6 y Tabla 7) muestran los valores guía para cada criterio respectivamente.

Tabla 6. Error aceptable en el balance iónico según la conductividad eléctrica

<table>
<thead>
<tr>
<th>Conductividad eléctrica (µs/cm)</th>
<th>50</th>
<th>200</th>
<th>500</th>
<th>2000</th>
<th>>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error aceptable (%)</td>
<td>±30</td>
<td>±10</td>
<td>±8</td>
<td>±4</td>
<td>±4</td>
</tr>
</tbody>
</table>

Fuente: (Custodio & Llamas, Hidrología subterránea, 1976)

Tabla 7. Error aceptable en balance iónico según sumatoria de aniones

<table>
<thead>
<tr>
<th>Σ Aniones (meq/L)</th>
<th>Error aceptable (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>±0.2</td>
</tr>
<tr>
<td>3-10</td>
<td>±2</td>
</tr>
<tr>
<td>10-800</td>
<td>±5</td>
</tr>
</tbody>
</table>

Fuente: (Crites & Tchobanoglous, 2000)

La Tabla 8 muestra el origen de los principales aniones y cationes disueltos en el agua subterránea.
Tabla 8. Origen de las principales sustancias disueltas en el agua subterránea (Custodio & Llamas, Hidrología subterránea, 1976)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Ion</th>
<th>Orígenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aniones</td>
<td>Cloruro (Cl-)</td>
<td>Mezclas con agua marina, ataque de rocas y minerales (evaporitas, sodalita, apatito, etc.), de gases y líquidos de emanaciones volcánicas, vertidos urbanos e industriales.</td>
</tr>
<tr>
<td></td>
<td>Sulfato (SO4)</td>
<td>Lavado de terrenos marinos, oxidación de sulfuros de todo tipo de rocas, concentración en el suelo de aguas de lluvia, disolución de yeso, anhidrita y terrenos yesíferos, actividades urbanas, industriales y agrícolas.</td>
</tr>
<tr>
<td></td>
<td>Bicarbonato (HCO3-)</td>
<td>Disolución de CO₂ atmosférico o del suelo, disolución de calizas y dolomitas (ayudado por CO₂ o por ácidos naturales), hidrólisis de silicatos</td>
</tr>
<tr>
<td></td>
<td>Nitrato (NO3)</td>
<td>Abonos agrícolas, procesos de nitrificación naturales, agua de lluvia, desarrollo de pozos explosivos, descomposición de materia orgánica y contaminación urbana, industrial y ganadera.</td>
</tr>
<tr>
<td>Cationes</td>
<td>Sodio (Na+)</td>
<td>Ataque de feldespatos y otros silicatos, lavado de sedimentos marinos, mezcla con agua de mar, disolución de sales evaporitas, contaminación urbana e industrial, concentración en agua de lluvia.</td>
</tr>
<tr>
<td></td>
<td>Potasio (K+)</td>
<td>Ataque de ortosa y otros silicatos (micas, arcillas, etc.), disolución de sales potásicas (sylvita, carnalita), agua de lluvia, contaminación minera, industrial y agrícola (abonos).</td>
</tr>
<tr>
<td></td>
<td>Calcio (Ca2+)</td>
<td>Disolución de calizas, dolomitas, yeso y anhidrita, ataque de feldespatos y otros silicatos cálcicos, disolución de Cationes cemento calcáreo de muchas rocas, agua de lluvia</td>
</tr>
<tr>
<td></td>
<td>Magnesio (Mg2+)</td>
<td>Disolución de dolomitas y calizas dolomíticas, ataque de silicatos magnésicos y ferromagnésicos, lavado de rocas evaporíticas magnésicas (carnalita), agua de mar, contaminación industrial y minera.</td>
</tr>
</tbody>
</table>

La Tabla 9 muestra el balance iónico realizado para los puntos muestreados, donde se observa un porcentaje de error en el balance iónico relativamente aceptable, se encuentra que los puntos reportados por los expedientes de ANLA muestran un alto porcentaje de error en el balance iónico.
###Tabla 9. Balance iónico para los puntos de agua inventariados

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Σ Cationes (meq/L)</th>
<th>Σ Aniones (meq/L)</th>
<th>Conductividad (µs/cm)</th>
<th>% Error Balance iónico</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGC-002</td>
<td>3,16</td>
<td>3,38</td>
<td>-</td>
<td>-3%</td>
</tr>
<tr>
<td>SGC-003</td>
<td>2,22</td>
<td>2,05</td>
<td>193</td>
<td>4%</td>
</tr>
<tr>
<td>SGC-006</td>
<td>2,23</td>
<td>1,85</td>
<td>183</td>
<td>9%</td>
</tr>
<tr>
<td>SGC-008</td>
<td>3,88</td>
<td>4,05</td>
<td>369</td>
<td>-2%</td>
</tr>
<tr>
<td>SGC-009</td>
<td>8,94</td>
<td>8,20</td>
<td>585</td>
<td>4%</td>
</tr>
<tr>
<td>SGC-010</td>
<td>3,78</td>
<td>5,20</td>
<td>574</td>
<td>-16%</td>
</tr>
<tr>
<td>SGC-012</td>
<td>4,76</td>
<td>4,11</td>
<td>426</td>
<td>7%</td>
</tr>
<tr>
<td>SGC-017</td>
<td>4,07</td>
<td>3,27</td>
<td>303</td>
<td>11%</td>
</tr>
<tr>
<td>SGC-018</td>
<td>14,62</td>
<td>15,32</td>
<td>1173</td>
<td>-2%</td>
</tr>
<tr>
<td>SGC-019</td>
<td>3,59</td>
<td>4,17</td>
<td>352</td>
<td>-7%</td>
</tr>
<tr>
<td>SGC-020</td>
<td>8,07</td>
<td>8,32</td>
<td>669</td>
<td>-2%</td>
</tr>
<tr>
<td>SGC-022</td>
<td>3,46</td>
<td>4,39</td>
<td>351</td>
<td>-12%</td>
</tr>
<tr>
<td>SGC-024</td>
<td>3,16</td>
<td>3,29</td>
<td>253</td>
<td>-2%</td>
</tr>
<tr>
<td>SGC-029</td>
<td>6,77</td>
<td>7,29</td>
<td>660</td>
<td>-4%</td>
</tr>
<tr>
<td>SGC-030</td>
<td>3,50</td>
<td>3,64</td>
<td>323</td>
<td>-2%</td>
</tr>
<tr>
<td>ANLA-010</td>
<td>4,45</td>
<td>2,16</td>
<td>480</td>
<td>35%</td>
</tr>
<tr>
<td>ANLA-011</td>
<td>3,57</td>
<td>2,12</td>
<td>312</td>
<td>25%</td>
</tr>
<tr>
<td>ANLA-015</td>
<td>2,30</td>
<td>1,32</td>
<td>270</td>
<td>27%</td>
</tr>
<tr>
<td>ANLA-017</td>
<td>3,25</td>
<td>1,71</td>
<td>445</td>
<td>31%</td>
</tr>
<tr>
<td>COR-003</td>
<td>2,80</td>
<td>2,64</td>
<td>360</td>
<td>3%</td>
</tr>
<tr>
<td>COR-008</td>
<td>2,20</td>
<td>0,50</td>
<td>328</td>
<td>63%</td>
</tr>
</tbody>
</table>

####1.8.1.2 Diagrama de Piper

La Figura 18 muestra la distribución de la clasificación del agua según los iones contenidos en esta, se divide en tres zonas, una de cationes (izquierda), una de aniones (derecha) y una general (centro), a continuación en la Figura 19 se muestran graficados los puntos muestreados.
Figura 18. Diagrama de Piper

Figura 19. Diagrama de Piper para los puntos muestreados

El comportamiento general de la mayoría de los puntos es de aguas tipo bi/carbonatada cálcica y magnésica, donde se encuentran la mayor cantidad de datos. Un único dato (SGC-010) se muestra anómalo en las zonas extremas, esto debido a la ausencia de información suficiente.

En cuanto a la parte de cationes no se muestra un dominio de ninguno, exceptuando uno donde domina sodio y potasio y para otros 4 donde domina el magnesio.

Se observa que los aniones dominantes para la totalidad de los puntos son los bi/carbonatos.
1.8.1.3 Diagrama de Stiff

Esta gráfica está compuesta por tres ejes horizontales, cada uno de ellos enfrentando un catión y un anión. Todos los cationes se disponen al costado izquierdo del diagrama, y los aniones al derecho. Todos los ejes horizontales están a la misma escala (lineal) y las concentraciones están dadas en meq/L.

La tendencia general es similar a la vista en el diagrama de Piper, se observa dominio de los bi/carbonatos en la zona de aniones, mientras que los cationes se encuentran divididos en proporciones equilibradas (Figura 20 y Figura 21).

Figura 20. Diagramas de Stiff para los puntos muestreados

Figura 21. Diagramas de Stiff para los puntos muestreados

1.8.1.4 Diagrama de Schoeller-Berkaloff

Estos diagramas ayudan a comparar la proporción de elementos en el agua, mostrando de una manera diferente los puntos de las diferentes zonas, donde nuevamente se tiene un alto contenido de carbonatos y bicarbonatos.

La tendencia general de los bi/carbonatos es al alza, siendo los aniones dominantes, por parte de los cationes se observa que sodio y potasio son los que tienen concentraciones relativamente altas para algunos puntos captados. Finalmente se aprecia en la parte derecha la ausencia de información de nitratos en algunos puntos (Figura 22 y Figura 23). De los diagramas (Figuras 22 y 23) se observa que la tendencia general de las aguas subterráneas de la zona de estudio es bi/carbonatada lo cual puede deberse a aportes de
las formaciones sedimentarias circundantes por disolución de carbonatos. Puntualmente se presentan puntos con aguas de tendencia bi/carbonatadas Sódico Potásicas, lo que se puede deber a agentes contaminantes locales.

Figura 22. Diagramas de Schoeller para los puntos muestreados

1.8.2 Calidad de agua

Para determinar el uso y la calidad del agua en el área de estudio se tomaron los datos del estudio (INGEOMINAS, 1996) los cuales se compararon de acuerdo con las normas técnicas de calidad establecidas por el Decreto 485 de 1998 y la Resolución 2115 de 2007, dichos parámetros se encuentran a continuación a excepción de Hierro, Fosfatos, Turbidez, Coliformes fecales y totales.

➢ Conductividad

Con base en la resolución 2115 de 2.007 los valores reportados no deben sobrepasar los 1000 µS/cm para consumo humano. 5 puntos sobrepasan el valor límite establecido (Figura 24).

➢ Alcalinidad

Con base en la resolución 2115 de 2.007 los valores reportados no deben sobrepasar los 200 mg de CaCO3/L para consumo humano. Se observan 5 valores que sobrepasan los límites de alcalinidad sugeridos por la resolución (Figura 25).
➢ pH

Con base en la resolución 2115 de 2.007 los valores reportados deben de estar entre 6,5 y 9 unidades para consumo humano. La Figura 26 muestra que 7 puntos tienen un pH más ácido de lo permitido, mientras que ninguno sobrepasa el límite superior de 9,0 unidades.

Figura 26. pH

➢ Calcio

Con base en la resolución 2115 de 2.007 los valores reportados no deben sobrepasar los 60 mg/L para consumo humano. Se observan dos puntos sobrepasando los límites permitidos (90 y 72 mg/L), se observan faltantes en la información (Figura 27).

➢ Cloruros

Con base en la resolución 2115 de 2.007 los valores reportados no deben sobrepasar los 250 mg/L para consumo humano. Los valores de cloro encontrados están lejos de afectar negativamente la calidad de agua (Figura 28).
Figura 27. Calcio

Figura 28. Cloruros

➢ Magnesio

Con base en la resolución 2115 de 2.007 los valores reportados no deben sobrepasar los 36 mg/L para consumo humano. Ningún valor excede el límite establecido por la resolución, pero los aljibes 264 II C-02 y 264 II C-04 localizados en las veredas de Quinto Chipuelo y La Isla tienen valores que se acercan a este límite (Figura 29).
Figura 29. Magnesio

Magnesio mg/L

➢ Nitratos

Con base en la resolución 2115 de 2007 los valores reportados no deben sobrepasar los 10 mg/L para consumo humano. De los datos reportados, no todos reportan información de nitratos y a su vez 6 de éstos están sobrepasando el límite permitido por la resolución, por lo cual es posible que los faltantes de información de esta zona también tengan unos valores de nitratos a tener en cuenta (Figura 30).

Figura 30. Nitratos

Nitratos mg/L

➢ **Sulfatos**

Con base en la resolución 2115 de 2.007 los valores reportados no deben sobrepasar los 250 mg/L para consumo humano. Ningún valor muestra niveles peligrosos de sulfatos (Figura 31).

![Figura 31. Sulfatos](image)

➢ **Potasio**

Todos los puntos de captación arrojan concentraciones de potasio (en mg/L) relativamente bajas, igualmente no existen valores límite para concentración de potasio según la resolución 2115 de 2.007. (Figura 32).

➢ **Sodio**

Al igual que con el potasio, no existen valores límite para concentración de sodio según la resolución 2115 de 2.007. Los valores de sodio se encuentran reportados en mg/L, el punto 264 I D-16 localizado en la vereda Quinto Chipuelo muestra un valor excéntrico de Sodio (275 mg/L) (Figura 33).
Figura 32. Potasio

![Potasio mg/L](image)

Figura 33. Sodio

![Sodio mg/L](image)

➢ Coliformes Fecales

Con base en la resolución 2115 de 2.007 los valores reportados para consumo humano deben ser iguales a cero. Con base en el decreto 1594 de 1.984 los valores reportados entre 2.000 y 200 unidades deben ser manejados con métodos de potabilización convencionales. En los pocos valores que se tiene información, 5 muestran altos índices de coliformes fecales, donde dos de éstos superan las 2.000 unidades (Figura 34).
Coliformes fecales

Coliformes Totales

Con base en la resolución 2115 de 2.007 los valores reportados para consumo humano deben ser iguales a cero. Con base en el decreto 1594 de 1.984 los valores reportados entre 20.000 y 1.000 unidades deben de manejados con métodos de tratamiento convencional. Se muestran dos sitios con alarmantes valores de coliformes totales, pero debido a la ausencia de información es difícil establecer un comportamiento general.

Coliformes totales

1.8.2.1 Uso del agua

Para establecer el uso del agua, ya sea para consumo humano o consumo agrícola, doméstico o pecuario se toman en cuenta los artículos 38, 39, 40 y 41 del Decreto 1594 de 1984 los cuales muestran diferentes parámetros a evaluar, se compararon los valores obtenidos con los valores límite del decreto para determinar el uso potencial. Esto se realizó para los valores promedio como se muestra a continuación en laTabla 10, donde la casilla “recuento de valores” muestra la cantidad de datos con información y que fueron promediados. Se realiza hincapié en los faltantes de información crucial en estos parámetros, por lo cual es lo más posible es que el uso inferido no sea representativo debido a la ausencia de valores importantes, principalmente en el tema de coliformes fecales y totales donde aproximadamente 14 puntos muestran información, insuficientes para establecer un claro uso del agua, en laTabla 10 se señalan estos valores en rojo, al igual que los únicos dos valores de turbidez reportados. Finalmente, en color verde se muestran los valores promedios en un rango aceptable.

Tabla 10. Uso del agua de acuerdo con el Decreto 1594 de 1984

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>UNIDAD</th>
<th>RECUENTO DE VALORES</th>
<th>PROMEDIO</th>
<th>Decreto 1594 de 1984 Ministerio de Agricultura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Art 38 y 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consumo Humano y Uso Doméstico</td>
</tr>
<tr>
<td>Arsénico</td>
<td>mg/L</td>
<td>10</td>
<td>0,004</td>
<td>0.05</td>
</tr>
<tr>
<td>Aluminio</td>
<td>mg/L</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bario</td>
<td>mg/L</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Boro</td>
<td>mg/L</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Cobalto</td>
<td>mg/L</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Conductividad</td>
<td>µs/cm</td>
<td>49</td>
<td>507.795</td>
<td>1000</td>
</tr>
<tr>
<td>Cromo</td>
<td>mg/L</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
</tr>
<tr>
<td>Cadmio</td>
<td>mg/L</td>
<td>10</td>
<td><0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>Cobre</td>
<td>mg/L</td>
<td>10</td>
<td><0.1</td>
<td>1</td>
</tr>
<tr>
<td>Color</td>
<td>(Pt/Co)</td>
<td>14</td>
<td>19</td>
<td>75/20</td>
</tr>
<tr>
<td>Coliformes Fecales</td>
<td>NMP/100ml</td>
<td>13</td>
<td>726</td>
<td>20000/1000*</td>
</tr>
<tr>
<td>Coliformes Totales</td>
<td>NMP/100ml</td>
<td>14</td>
<td>24760</td>
<td>2000</td>
</tr>
<tr>
<td>Cloruros</td>
<td>mg/L</td>
<td>33</td>
<td>13.53</td>
<td>250</td>
</tr>
<tr>
<td>Hierro</td>
<td>mg/L</td>
<td>19</td>
<td>3.6</td>
<td>-</td>
</tr>
<tr>
<td>Litio</td>
<td>mg/L</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manganoso</td>
<td>mg/L</td>
<td>11</td>
<td>0.123</td>
<td>-</td>
</tr>
<tr>
<td>Molibdeno</td>
<td>mg/L</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitritos</td>
<td>mg/L</td>
<td>12</td>
<td>0.296</td>
<td>10</td>
</tr>
<tr>
<td>Nitratos</td>
<td>mg/L</td>
<td>21</td>
<td>8.71</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Níquel</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Plomo</td>
<td>mg/L</td>
<td>10</td>
<td><0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>52</td>
<td>6.94</td>
<td>5-9/6.5-8.5*</td>
</tr>
<tr>
<td>Selenio</td>
<td>mg/L</td>
<td>2</td>
<td>0.003</td>
<td>0.01</td>
</tr>
<tr>
<td>Turbidez</td>
<td>NTU</td>
<td>6</td>
<td>3.618</td>
<td>2/10*</td>
</tr>
<tr>
<td>Vanadio</td>
<td>mg/L</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/L</td>
<td>15</td>
<td>2</td>
<td>25</td>
</tr>
</tbody>
</table>

Los valores con “*” para uso doméstico y consumo humano son admisibles por el decreto siempre que se realice un proceso de desinfección.

Como se observó previamente, la concentración de coliformes totales es bastante alta y no está dentro de los rangos permitidos según el Decreto 1594 de 1984, según esta cantidad de coliformes totales, el agua de estos puntos que exceden los valores límite no tendría ningún uso potencial acorde con este decreto.

En el caso de los coliformes fecales, estos pueden pasar por un proceso de desinfección. De igual manera para la turbidez cabe aclarar, que el promedio hallado fue dado únicamente por los puntos que tenían valores medidos, que eran muy pocos, por lo tanto, esta cifra promedio puede estar siendo sobre e subestimada.

1.9 USOS ACTUALES Y DEMANDA DEL RECURSO HÍDRICO SUBTERRÁNEO

De los 61 puntos de agua reportados en los expedientes de la ANLA, INGEOMINAS, y CORTOLIMA, 14 de ellos contienen información acerca del uso actual del agua lo que equivale al 22,95% de los datos, lo que no representa una cantidad significativa para determinar el uso actual de esta, aun así, estos datos muestran que principalmente se le está dando un uso doméstico, agrícola, pecuario e industrial. (Ver Figura 36).

Además, de acuerdo a los estudios de uso y cobertura del suelo realizados por esta consultoría los cuales se pueden observar en el capítulo de Cobertura y Usos del Suelo, se evidencia que la zona donde se encuentran las formaciones geológicas potencialmente acuíferas, se llevan a cabo actividades agrícolas correspondientes a cultivos de arroz, por lo cual se estima que los puntos que no tienen información pueden tener un uso similar a los anteriores.
1.10 ÁREAS DE ESPECIAL IMPORTANCIA HIDROGEOLOGICA

1.10.1 Zonas de Recarga

En vista de que no se dispone de la información necesaria para estimar la magnitud de ingreso de agua a partir de la recarga lateral al acuífero (flujo regional proveniente de las unidades geológicas que bordean el acuífero) y la recarga directa en todo el piedemonte en contacto con los depósitos cuaternarios y las formaciones geológicas circundantes. Se establece que una zona estratégica de recarga es todo el piedemonte donde se encuentran los ápices de los abanicos del Guamo y Espinal, los cuales corresponden a las formaciones que conforman los principales sistemas acuíferos de la cuenca.

En cuanto a la contaminación, se hace especial énfasis en la zona central de los abanicos (Zonas de recarga directa) donde presumiblemente se presentan los principales caudales de explotación, ya que esta área presenta una actividad agrícola (cultivos de arroz). Dichas actividades son potencialmente contaminantes y aunado a que se encuentran en un área de vulnerabilidad alta a la contaminación, se favorece que se presente la de degradación en la calidad del agua que se infiltra y que puede alcanzar los sistemas acuíferos.

1.10.2 Sistemas Lenticos y Loticos

Los principales sistemas loticos de la zona corresponden a los Ríos Luisa y Guadual; los cuales en la parte alta de la cuenca fungen como zonas de descarga.

Los sistemas lenticos en el área de la cuenca son escasos y se ubican en la parte alta de la misma, sin embargo, no se tiene información que permita evaluar la interacción de los
mismos con los sistemas acuíferos. Es importante resaltar que en la parte baja de la cuenca no se presenten sistemas lenticos.

Sin embargo, existen 20 sistemas lenticos de menor tamaño, que al no tener denominación fueron nombrados como Sistema Léntico (SL) desde SL-1 hasta SL-20, los cuales se encuentran relacionados en la Tabla 11.

A continuación, en la Figura 37 se presenta la ubicación de los sistemas lenticos en la zona de estudio (Ver Anexo 1 – Mapas - GE374-SPC-PSIG-SLE-001-00 que corresponde al MAPA DE SISTEMAS LENTICOS), y en la Figura 38 su respectiva leyenda.

1.10.3 Mapa de áreas de especial importancia hidrogeológica

De acuerdo a lo anterior se realizó el mapa de zonas de especial importancia hidrogeológica, el cual se puede observar en la Figura 39.Mapa de Zonas de Especial Importancia Hidrogeológica. (Ver ANEXO 1 – Mapas - GE374-PLC-PSIG-EHG-001-00 que corresponde al MAPA DE ÁREAS DE ESPECIAL IMPORTANCIA HIDROGEOLÓGICA) en donde se divide la cuenca en 5 zonas.

Tabla 11. Sistemas lenticos de la cuenca de río Luisa y otros directos al Magdalena

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Area (m²)</th>
<th>Coordenada Este (m)</th>
<th>Coordenada Norte (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema Léntico 1</td>
<td>77620.89</td>
<td>917846.93</td>
<td>956669.00</td>
</tr>
<tr>
<td>Sistema Léntico 2</td>
<td>38433.04</td>
<td>917598.03</td>
<td>951832.38</td>
</tr>
<tr>
<td>Sistema Léntico 3</td>
<td>34630.83</td>
<td>903636.06</td>
<td>940173.92</td>
</tr>
<tr>
<td>Sistema Léntico 4</td>
<td>27768.21</td>
<td>872345.02</td>
<td>961748.26</td>
</tr>
<tr>
<td>Sistema Léntico 5</td>
<td>27380.77</td>
<td>919159.09</td>
<td>957893.94</td>
</tr>
<tr>
<td>Sistema Léntico 6</td>
<td>12103.88</td>
<td>900467.54</td>
<td>940941.17</td>
</tr>
<tr>
<td>Sistema Léntico 7</td>
<td>11753.62</td>
<td>892690.29</td>
<td>963867.68</td>
</tr>
<tr>
<td>Sistema Léntico 8</td>
<td>9884.75</td>
<td>892842.40</td>
<td>964265.74</td>
</tr>
<tr>
<td>Sistema Léntico 9</td>
<td>8330.69</td>
<td>899513.04</td>
<td>939067.51</td>
</tr>
<tr>
<td>Sistema Léntico 10</td>
<td>8040.72</td>
<td>915630.61</td>
<td>943676.44</td>
</tr>
<tr>
<td>Sistema Léntico 11</td>
<td>6457.30</td>
<td>893138.81</td>
<td>963983.94</td>
</tr>
<tr>
<td>Sistema Léntico 12</td>
<td>5103.86</td>
<td>914422.29</td>
<td>963775.61</td>
</tr>
<tr>
<td>Sistema Léntico 13</td>
<td>4767.00</td>
<td>894203.94</td>
<td>957776.15</td>
</tr>
<tr>
<td>Sistema Léntico 14</td>
<td>3520.99</td>
<td>891833.46</td>
<td>963656.13</td>
</tr>
<tr>
<td>Sistema Léntico 15</td>
<td>3320.06</td>
<td>893434.78</td>
<td>963863.12</td>
</tr>
<tr>
<td>Sistema Léntico 16</td>
<td>2837.19</td>
<td>919604.14</td>
<td>965487.84</td>
</tr>
<tr>
<td>Sistema Léntico 17</td>
<td>1475.06</td>
<td>916569.91</td>
<td>964794.93</td>
</tr>
<tr>
<td>Sistema Léntico 18</td>
<td>1209.56</td>
<td>918646.74</td>
<td>964125.72</td>
</tr>
<tr>
<td>Sistema Léntico 19</td>
<td>1047.80</td>
<td>916646.65</td>
<td>964836.71</td>
</tr>
<tr>
<td>Sistema Léntico 20</td>
<td>576.44</td>
<td>913900.39</td>
<td>961428.38</td>
</tr>
</tbody>
</table>

Fuente: Formulación POMCA río Luisa y otros directos al Magdalena. Consorcio Vino Tinto y Oro, 2017
Zona 1: correspondiente a los acuíferos libre de recarga directa la cual corresponde a la zona de mayor extensión en la cuenca, donde se encuentran ubicados los depósitos cuaternarios de los Abanicos del Guamo y Espinal. Esta zona es de vital importancia ya que estas unidades constituyen los principales acuíferos de la cuenca, los cuales son alimentados de manera directa por precipitación, y por transferencia hacia la zona de contacto de las formaciones circundantes y los ápices de los abanicos.

Adicionalmente es de destacar que el área comprendida por la Zona 1 se clasificó como zona de vulnerabilidad intrínseca moderada y alta de acuerdo a la metodología de GOD, siendo el área más vulnerable de toda la cuenca.

Zona 2: corresponde a acuíferos confinados y semiconfinados de extensión y producción limitada, correspondientes a estratos sub horizontales de rocas del Grupo Honda de recarga por conexión hidráulica con formaciones circundantes y en algunos casos de recarga directa especialmente para los niveles superiores.
Figura 37. Sistemas lenticos cuenca del río Luisa y otros directos al Magdalena

Fuente: Formulación POMCA río Luisa y otros directos al Magdalena. Consorcio Vino Tinto y Oro, 2017
Las rocas del Grupo Honda se encuentran conformadas por secuencias interestratificadas de lodolitas, areniscas y tobas, las cuales pueden dar origen a acumulaciones puntuales de aguas subterráneas.

Zona 3: corresponde a zonas de recarga de acuíferos correspondientes a formaciones sedimentarias cretácneas y palaéogenas, cuya morfología y disposición estructural pueden conducir las aguas de las partes altas, hacia las partes bajas, las cuales se encuentran en contacto con los ápices de los abanicos.

Zona 4: corresponde a zonas de recarga de acuíferos por permeabilidad secundaria correspondientes a formaciones sedimentarias cretácneas compuesta principalmente por calizas que han dado origen a la formación de cavernas y conductos preferenciales para el tránsito del fluido.

Zona 5: corresponde a las áreas de baja importancia hidrogeológica, correspondientes a formaciones ígneas (Batolito de Ibague) cubiertas por grandes espesores de cenizas volcánicas y suelos residuales de naturaleza arcillosa. Es importante resaltar que aunque esta zona es de baja importancia hidrogeológica, es de vital importancia en cuanto al recurso hídrico superficial ya que es donde se da origen a todos los cuerpos de agua (Sistemas loticos) presentes en la cuenca.
Figura 39. Mapa de zonas de especial importancia hidrogeológica

Fuente: Formulación POMCA río Luisa y otros directos al Magdalena. Consorcio Vino Tinto y Oro, 2017
1.11 MODELO HIDROGEOLOGÓICO CONCEPTUAL

Los abanicos del Guamo y Espinal conforman las unidades de mayor importancia hidrogeológica dentro de la cuenca al presentar acuíferos continuos de extensión regional; depositados en ambientes fluviales y fluviovolcánicos principalmente, conformados por sedimentos poco consolidados que desarrollan acuíferos de tipo libre a semiconfinados de recarga directa, almacenando aguas recomendables para cualquier uso, con alta capacidad productividad y capacidad específica entre 2.0 y 5.0 l/s/m Ingeominas (2000).

Espacialmente presenta un gradiente de precipitación con valores de 1575 mm/año en la parte media de la cuenca (ápices y zonas de recarga por flujos regionales) descendiendo a las zonas de descarga cerca del valle del río magdalena a 1440 mm/año. La recarga en el acuífero se calculó a partir de ecuaciones empíricas dando como resultado un valor de 390 mm/año

Zona de recarga directa: Distribuida en toda la parte baja de la cuenca donde se encuentran los depósitos de los abanicos del Guamo y Espinal, ocasionada por la infiltración directa del agua lluvia que es favorecida por las condiciones de baja pendiente a lo largo y ancho del área y la litología de los depósitos cuaternarios y de rocas sedimentarias. Sin embargo, es importante aclarar que la zona más húmeda (mayores precipitaciones) se encuentra en la parte alta de la cuenca.

Recarga por flujos regionales: provenientes de la cuenca alta, de afloramientos del Batolito de Ibagué, la Formación Gualanday y otras formaciones cretácicas y terciarias.

La zona de descarga de los sistemas acuíferos, de acuerdo a las condiciones identificadas, son los ríos Luisa y Guadal en la parte alta de la cuenca, y el río Magdalena en la parte baja de la cuenca. (Figura 40) (Ver ANEXO 1 – Mapas - GE374-PLC-PSIG-MHG-001-00 que corresponde al MODELO HIDROGEOLOGÓICO CONCEPTUAL).

1.12 SISTEMAS ACUÍFEROS OBJETO DE PRIORIZACIÓN

De acuerdo a los resultados de los análisis realizados para este estudio, principalmente los relacionados con las características hidrogeológicas de los de las formaciones, la determinación de zonas de recarga y la vulnerabilidad intrínseca de los acuíferos, se determina que los depósitos cuaternarios correspondientes al Abanico del Guamo y el Abanico de Espinal, constituyen los principales sistemas acuíferos de la cuenca, razón por la cual debe ser considerado adelantar proyectos específicos para aguas subterráneas como los PMAA (Planes de Manejo Ambiental de acuíferos), que permitan establecer con mayor precisión las condiciones del sistema acuífero y permitan establecer medidas que garanticen la gestión y el manejo adecuado del recurso hídrico subterráneo ya que por la naturaleza y climatología de la zona, este recurso puede servir como fuente alterna a las aguas superficiales y contribuir al desarrollo socio-económico de la región.
1.13 NECESIDADES DE INFORMACIÓN Y CONOCIMIENTO DEL COMPONENTE HIDROGEOlógICO CON FINES DEL POSTERIOR DESARROLLO DEL MODELO HIDROGEOlógICO CONCEPTUAL Y PLAN DE MANEJO AMBIENTAL DE ACUÍFERO

A partir de los estudios realizados se ve la necesidad de contar con información de pruebas de bombeo y mediciones de niveles piezométrico, estáticos y dinámicos, así como información de expedientes de concesiones e inventarios de puntos de agua, que permitan determinar el comportamiento hidráulico de los sistemas acuíferos, realizar cálculos de oferta y demanda, y que permita alimentar el modelo numérico de estos sistemas.

Complementariamente es necesario contar con estudios hidrogeoquímico e isotópicos para poder interpretar la proveniencia de las aguas subterráneas, así como muestreos de calidad de agua puntuales y especializados sobre toda el área con el fin de determinar las principales características del recurso subterráneo y determinar sus aptitudes para su uso y aprovechamiento.

Adicionalmente se requiere contar con información de geoelectrónica que permita determinar con mayor precisión la geometría, profundidad de los sistemas acuíferos y del basamento.
hidrogeológico, así como información de registros y diseños de pozos para determinar con mejor exactitud los niveles acuíferos de las unidades de mayor potencial hidrogeológico.

Puntualmente se observa que no se tiene certeza del número total actual de puntos de agua dentro del área de la cuenca, por lo cual se recomienda realizar una campaña de inventariado de puntos de agua; así mismo, dentro de los expedientes de puntos de aguas y estudios revisados se evidencia que no todos los documentos poseen la misma información por lo que se recomienda utilizar el formato FUNIAS con la finalidad de unificar la información. De igual forma como se mencionó anteriormente es recomendable acompañar estos inventarios con mediciones de parámetros hidráulicos y de parámetros hidroquímicos, ya que, estos parámetros corresponden a los mayores faltantes de información dentro de los documentos, y son de suma importancia para la caracterización de los sistemas acuíferos.

1.14 CONSIDERACIONES SOBRE LA AFECTACIÓN DE LA ACTIVIDAD MINERA DE LA COLOSA, SOBRE LOS SISTEMAS ACUÍFEROS PRESENTES EN LA CUENCA

La zona de La Colosa se encuentra ubicada en el municipio de Cajamarca al oeste de la ciudad de Ibagué. Según la resolución No. 1087 del Ministerio de Ambiente y Desarrollo Sostenible –MADS- del 09 de Junio de 2017, donde se expresa información suministrada por la empresa ANGLOGOLD ASHANTI de Colombia, en la cual se establece que la zona de La Colosa se encuentra sobre rocas ígneas hipoabisales y rocas metamórficas correspondientes a esquistos del Grupo Cajamarca lo cual es concordante con la información presentada por el Servicio Geológico Colombiano en la Plancha 244, con lo cual a la zona, por la naturaleza y génesis de la roca se la atribuye un comportamiento hidrogeológico de acuífrado, sin embargo, debido al grado de fracturamiento que presentan las rocas por la presencia de sistemas de fallas regionales de Palestina y San Jerónimo se enuncia que pueden formar acuíferos fracturados.

Una vez establecido el contexto geológico regional de la zona de La Colosa y sumado a la distancia que separa a la zona del área de estudio (20 Km en la parte alta y 70 Km hacia la parte baja de la cuenca) se puede inferir que no existe una conexión hidrogeológica con los sistemas acuíferos de la cuenca, ya que en la información geológica y geomorfológica disponible no se observa ninguna estructura que permita la comunicación entre las dos zonas.

Así mismo el modelo Hidrogeológico conceptual concebido para la cuenca nos muestra que los principales sistemas acuíferos se recargan de manera directa y por conexión hidráulica con las rocas circundantes, por lo cual las actividades que se puedan desarrollar en La Colosa, no presentarían riesgo alguno para el recurso hídrico subterráneo de la Cuenca Hidrográfica del Río Luisa y Otros directos al Magdalena.

1.15 CONCLUSIONES Y RECOMENDACIONES

De manera general las unidades geológicas que componen el área de estudio muestran una gran diversidad de comportamientos de acuerdo a los cuales las podemos clasificar hidrogeológicamente en la Tabla 12.
Tabla 12. Clasificación de unidades hidrogeológicas

<table>
<thead>
<tr>
<th>TIPO DE ACUÍFERO</th>
<th>FORMACIONES GEOLÓGICAS ASOCIADAS</th>
<th>UNIDAD HIDROESTRATIGRÁFICA</th>
<th>COMPORTAMIENTO POSIBLE DE LA UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuíferos en los cuales la porosidad principal es intergranular</td>
<td>Qag - Qae</td>
<td>I1</td>
<td>Acuíferos Libres a semiconfinados.</td>
</tr>
<tr>
<td></td>
<td>Qa – Qt – Qta – Qtb - Qal</td>
<td>I2</td>
<td>Acuíferos Libres.</td>
</tr>
<tr>
<td></td>
<td>Qto - Qc</td>
<td>I3</td>
<td>Acuíferos Libres a semiconfinados.</td>
</tr>
<tr>
<td>Acuíferos en rocas consolidadas con porosidad primaria y fisuradas con porosidad secundaria o carstificados</td>
<td>Pggi - Pggs</td>
<td>II1</td>
<td>Acuíferos Confinados a semiconfinados.</td>
</tr>
<tr>
<td>Rocas granulares o fisuradas que forman acuíferos insignificantes con recursos limitados o sin recursos</td>
<td>JTrpp – Jpp – Ksb – Ksla -</td>
<td>III1</td>
<td>Acuítares a acuictados</td>
</tr>
</tbody>
</table>

Fuente: Formulación POMCA río Luisa y otros directos al Magdalena. Consorcio Vino Tinto y Oro, 2017

De acuerdo a la información secundaria obtenida y las condiciones morfológicas observadas se estima que la dirección del flujo subterráneo es Oeste – Este; desde la parte alta hacia el río Magdalena.

La recarga de los acuíferos en la cuenca del río Luisa, se efectúa principalmente de manera directa por precipitación y en menor proporción por interconexión hidráulica con los principales cuerpos hídricos existentes alrededor en la zona.

Las tres expresiones utilizadas para el cálculo de la recarga potencial muestran una variación el 13.5% al 60% de la precipitación anual dependiendo de la expresión utilizada, donde se evidencia que la expresión de Turc presenta los valores más altos en comparación a las expresiones de Sehgal y Cheeturvedi, las cuales se encuentran en rangos más cercanos entre sí (Tabla 13).

Tabla 13. Valores promedios de recargas potencial

<table>
<thead>
<tr>
<th>Expresiones de calculo</th>
<th>R Cheeturvedi</th>
<th>R Sehgal</th>
<th>R Turc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje con respecto a la precipitación</td>
<td>13.5%-16%</td>
<td>24%-30%</td>
<td>32%-60%</td>
</tr>
<tr>
<td>Promedio (mm/año)</td>
<td>237</td>
<td>436</td>
<td>766</td>
</tr>
</tbody>
</table>

Las zonas de descarga corresponden al río Luisa y otros directos al Magdalena en la parte alta y media de la cuenca y en la parte baja de la cuenca el río Magdalena. De igual manera se estima que otra fuente de descarga puede corresponder a los pozos de agua ubicados en las partes baja de la cuenca (Zonas de los abanicos del Guamo y Espinal), ya que, aunque no se tiene inventario de puntos de agua en la zona, las condiciones hidrogeológicas evaluadas muestran el potencial de la zona como reservorios de agua subterránea los cuales pueden ser aprovechados.

Las zonas más vulnerables a la contaminación dentro de la cuenca corresponden a la parte baja de la misma donde se encuentran los depósitos de abanicos del Guamo y Espinal.

Se establece que una zona estratégica de recarga es todo el piedemonte donde se encuentran los ápices de los abanicos del Guamo y Espinal, así como el cuerpo y la parte distal de los mismos los cuales constituyen zonas de recarga directa.

Se recomienda adelantar proyectos específicos para aguas subterráneas en las zonas de los Abanicos del Guamo y Espinal como los PMAA (Planos de Manejo Ambiental de Acuíferos), que permitan establecer con mayor precisión las condiciones de los sistemas acuíferos y permitan establecer medidas que garanticen la gestión y el manejo adecuado del recurso hídrico subterráneo.
ANEXOS
ANEXO 1. MAPAS BASE

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 1. Mapas\Base
ANEXO 1. MAPAS
FINALES SEGÚN LO SOLICITA LA GUÍA

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 1. Mapas\Finales_Segun_Guia
ANEXO 2. INVENTARIO DE PUNTOS DE AGUA
INVENTARIO PUNTOS DE AGUA

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeología\Anexos\Anexo 2. Inv_Puntos_Agua
ANEXO 3. EXPEDIENTES CONSULTADOS DEL ANLA
CORRESPONDENCIA ENVIADA

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 3. Expedientes_ANLA\Corresp_Enviada
ANEXO 3. EXPEDIENTES CONSULTADOS DEL ANLA
CORRESPONDENCIA RECIBIDA

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 3. Expedientes_ANLA\Corresp_Recibida
ANEXO 3. EXPEDIENTES CONSULTADOS DEL ANLA
EXPEDIENTES CONSULTADOS EN EL ANLA

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 3. Expedientes_ANLA\Expedientes_Consultados
ANEXO 4. EXPEDIENTES CONSULTADOS DE CORTOLIMA
CORRESPONDENCIA ENVIADA

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 4. Expedientes_CORTOLIMA\Corresp_Enviada
ANEXO 4. EXPEDIENTES CONSULTADOS DE CORTOLIMA
CORRESPONDENCIA RECIBIDA

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 4. Expedientes_CORTOLIMA\Corresp_Recibida
ANEXO 4. EXPEDIENTES CONSULTADOS DE CORTOLIMA
EXPEDIENTES CONSULTADOS EN CORTOLIMA

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Fecha de modificación</th>
<th>Tipo</th>
<th>Tamaño</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBAGUE_SEDE_CENTRAL</td>
<td>20/12/2019 17:49</td>
<td>Carpeta de archivos</td>
<td></td>
</tr>
<tr>
<td>MELGAR</td>
<td>20/12/2019 17:49</td>
<td>Carpeta de archivos</td>
<td></td>
</tr>
<tr>
<td>PURIFICACION</td>
<td>20/12/2019 17:49</td>
<td>Carpeta de archivos</td>
<td></td>
</tr>
<tr>
<td>Base de datos exp.</td>
<td>8/10/2019 14:50</td>
<td>Hoja de cálculo de M...</td>
<td>40 KB</td>
</tr>
</tbody>
</table>

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 4. Expedientes_CORTOLIMA\Expedientes_Consultados
ANEXO 4. EXPEDIENTES CONSULTADOS DE CORTOLIMA
RESUMEN DE EXPEDIENTES CONSULTADOS EN CORTOLIMA

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 4. Expedientes_CORTOLIMA\Resumen_Exp_Cortolima
ANEXO 5. SOLICITUD INFORMACIÓN MUNICIPAL RESPUESTA DE ALCALDÍAS

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeología\Anexos\Anexo 5. Solicitud_Inf_Mpal\Resp_Alcaldias
ANEXO 5. SOLICITUD INFORMACIÓN MUNICIPAL
OFICIOS EMITIDOS A LAS ALCALDÍAS

L:\Luisa_Directos_Magdalena\01 Diagnostico\3.3 Hidrogeologia\Anexos\Anexo 5. Solicitud Inf_Mpal \ Of_Alcaldias